-
To address the persistent challenge of morphological instability during laser-based additive manufacturing (AM) of dilute alloys, this study systematically explores the coupled effects of rotation and strong shear flow on the stability of the solid–liquid interface under rapid solidification conditions. A comprehensive multi-physics theoretical model is established based on linear stability analysis, incorporating key dimensionless parameters: Taylor number (Ta), inverse Schmidt number (R), dimensionless surface energy (Γ), and a nonlinear shear velocity profile applied parallel to the interface. The model also accounts for the presence of a solute boundary layer. By solving the resulting perturbation equations, the growth rates of interface disturbances are obtained. The results reveal that strong shear flow markedly increases the critical morphological number, indicating enhanced interfacial stability. When rotation is introduced, the instability region in wavenumber space is significantly compressed, particularly at small wavenumbers, due to the Coriolis-induced stabilization. Figure 3 illustrates how the critical conditions vary with increasing Ta and surface energy, while Figure 7 demonstrates the instantaneous perturbation fields of concentration and velocity in the melt pool, where the Coriolis effect promotes symmetrical recirculation cells and suppresses disturbance penetration in the vertical direction. Moreover, the synergy of rotation and shear flow facilitates a more uniform solute distribution near the interface, mitigates compositional gradients, and supports the formation of ordered laminar flow structures. These effects contribute to suppressing constitutional undercooling and refine the microstructure. The model is dimensionless and general, with key dimensionless groups reflecting process inputs such as solidification velocity, thermal gradients, and material diffusivity. This work provides critical physical insights into rotation–flow coupling mechanisms in AM and offers a quantitative framework for optimizing process parameters to control microstructural evolution. The findings are particularly relevant for AM of symmetric components (e.g., axisymmetric gears or biomedical implants) where rotational auxiliary fields can be practically introduced.
-
Keywords:
- additive manufacturing /
- strong shear flow /
- rotation /
- interface stability
-
[1] Srinivasan D, Ananth K 2022 J. Indian Inst. Sci. 102 311
[2] Su X Z, Zhang P L, Huang Y Z 2024 Metals 14 1373
[3] Goncalves A, Ferreira B, Leite M, Ribeiro I 2023 Sustain. Prod. Consum. 42 292
[4] Priyadarshini J, Singh R K, Mishra R, Dora M 2023 Technol. Forecast. Soc. Change 194 122686
[5] Zhao Z L 2019 Master Thesis (Shijiazhuang: Hebei University of Science and Technology) (in Chinese) [赵增亮 2019 硕士学位论文(石家庄:河北科技大学) ]
[6] Zhang M, Qin C, Wang Y F, Hu X Y, Ma J G, Zhuang H, Xue J M, Wan L, Chang J, Zou W G, Wu C T 2022 Addit. Manuf. 54 102721
[7] Zou Z Q, Xu J K, Ren W F, Wang M F, Yu H D 2025 J. Manuf. Process. 135 269
[8] Queguineur A, Marolleau J, Lavergne A, Rückert G 2020 Weld World 64 1389
[9] Choi J, Sung K, Hyun J, Shin S C 2025 Carbohydr. Polym. 349 122972
[10] Ismail I F, Shuib R K, Ramli M R, Chia S K 2024 J. Phys.: Conf. Ser. 2907 012024
[11] Chen A N, Liu K, Yan C Z 2024 Front. Mater. 11 1519909
[12] Ye Z W, Hao Z D, Dou R, Wang L, Tang W Z 2024 Int. J. Appl. Ceram. Technol. 21 2824
[13] Guo X H, Meng Y F, Yu Q X, Xu J N, Wu X, Chen H 2025 Opt. Laser Technol. 187 112800
[14] Li J F 2022 Master Thesis (Haerbin: Harbin Engineering University) (in Chinese) [李继峰 2022 硕士学位论文(哈尔滨:哈尔滨工程大学) ]
[15] Kowal K N, Davis S H 2019 Acta Mater. 164 464
[16] Chen B Y, Zhang Q Y, Sun D K, Wang Z J 2022 J. Cryst. Growth 585 126583
[17] Ma C Z, Zhang R J, Li Z X, Jiang X, Wang Y W, Zhang C, Yin H Q, Qu X H 2023 Integr. Mater. Manuf. Innov. 12 502
[18] Jegatheesan M, Bhattacharya A 2022 Int. J. Heat Mass Transf. 182 121916
[19] Hofmann D C, Roberts S, Otis R, Kolodziejska J, Dillon R P, Suh J, Shapiro A A, Liu Z K, Borgonia J P 2014 Sci. Rep. 4 5357
[20] Griffths R J, Garcia D, Song J, Vasudevan V K, Steiner M A, Cai W J, Yu H Z 2021 Mater 15 100967
[21] Claude A, Chalvin M, Campcasso S, Hugel V 2024 Procedia CIRP 125 266
[22] Zhang H J, Wu M H, Rodrigues C M G, Ludwig A, Kharicha A, Rónaföldi A, Roósz A, Veres Z, Svéda M 2022 Acta Mater. 241 118391
[23] Zeng C, Huang F, Xue J T, Jia Y, Hu J X 2024 3D Print. Addit. Manuf. 11 e1887
[24] Lu L 2023 Master Thesis (Zhenjiang: Jiangsu University of Science and Technology) (in Chinese) [卢林 2023 硕士学位论文(镇江:江苏科技大学) ]
[25] Zhao X S 2023 Ph. D. Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese) [赵旭山 2023 博士学位论文(武汉:华中科技大学) ]
[26] Han X, Li C, Sun H, Sun Y C 2024 Weld. World 68 1707
[27] Merchant G J, Davis S H 1990 Acta Metall. Mater. 38 2683
[28] Aziz M J 1982 J. Appl. Phys. 53 1158
Metrics
- Abstract views: 46
- PDF Downloads: 1
- Cited By: 0