Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Mechanism of vapor-liquid phase transition under synergistic action of nanoscale potential energy and cavitation

LIU Renjie LI Yuxiu CHEN Ying DING Yu

Citation:

Mechanism of vapor-liquid phase transition under synergistic action of nanoscale potential energy and cavitation

LIU Renjie, LI Yuxiu, CHEN Ying, DING Yu
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Liquid evaporation on a nanoscale is significantly strengthened by microscopic effects, with its rate even exceeding the predicted upper limit of the classical Hertz-Knudsen equation. This property makes nanoscale liquid evaporation highly valuable for applications in solar-driven interfacial evaporation, electronics cooling, and microfluidics. However, existing research predominantly focuses on the influence of individual microscopic effects, leaving the synergistic mechanisms of multiple effects to be poorly understood. To deeply reveal the microscopic mechanism of liquid phase change on a nanoscale, this study employs liquid argon as a model system to systematically investigate the synergistic effect of potential energy and cavitation on its evaporation. Using molecular dynamics simulations, we study the evaporation process of liquid argon within nanochannels characterized by different solid-liquid interaction strengths under identical temperature and time frame. The results indicate that an increase in the solid-liquid interaction strength reduces the average potential energy of liquid argon and increases the evaporation energy barrier, which theoretically should suppress the evaporation. Nevertheless, the capillary pressure induced by the increased meniscus curvature leads to negative pressure within the liquid argon, triggering a cavitation effect. This cavitation generates bubbles inside the liquid argon, which significantly increases the evaporation surface area and consequently promotes evaporation. Furthermore, the meniscus-dominated evaporation mode is gradually weakened, while the contribution from cavitation bubbles becomes increasingly pronounced. This study demonstrates that the evaporation rates of liquid argon in the four nanochannels with different interaction strengths are 3.49×10–14, 3.95×10–14, 3.02×10–14, and 2.44×10–14 kg/s, respectively. Therefore, it can be concluded that the evaporation rate does not vary linearly with the increase of solid-liquid interaction strength. On the contrary, under moderate interaction intensity, the optimal synergistic state between potential energy and the cavitation effect is achieved, thereby obtaining a maximum evaporation rate.
  • 图 1  物理模型结构示意图 (a) 立体视图; (b) 侧视图

    Figure 1.  Schematic diagram of the physical model structure: (a) 3D view; (b) side view.

    图 2  不同的固-液相互作用强度下液氩原子数量随时间变化

    Figure 2.  Time-dependent variation in the number of argon atoms under different solid-liquid interaction strengths.

    图 3  不同的固-液相互作用强度下液氩的蒸发速率

    Figure 3.  Evaporation rate of liquid argon under different solid-liquid interaction strengths.

    图 4  纳米通道内液氩势能与密度分布的计算原理图

    Figure 4.  Schematic diagram of the computational methodology for potential energy and density distributions of liquid argon in nanochannels.

    图 5  液氩原子沿通道高度方向的势能分布

    Figure 5.  Potential energy profile of argon atoms along the channel height direction.

    图 6  液氩沿通道高度方向的密度分布

    Figure 6.  Density profile of liquid argon along the channel height direction.

    图 7  液氩原子沿通道高度方向的势能分布云图 (a) εsl = 0.5εll; (b) εsl = εll; (c) εsl = 2εll; (d) εsl = 4εll

    Figure 7.  Contour plots of liquid argon atomic potential energy distribution along the channel height Direction: (a) εsl = 0.5εll; (b) εsl = εll; (c) εsl = 2εll; (d) εsl = 4εll.

    图 8  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}=0.5{\varepsilon }_{\mathrm{l}\mathrm{l}} $时, 对应时刻(a)通道内液氩的状态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Figure 8.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}=0.5{\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 9  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $时, 对应时刻(a)通道内液氩的状态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Figure 9.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 10  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $ 时, 对应时刻(a)通道内液氩的形态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Figure 10.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 11  固-液相互作用强度为$ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $时, 对应时刻(a)通道内液氩的形态, 以及(b)通道内液氩压力沿通道长度方向的分布

    Figure 11.  (a) Snapshots of liquid argon configuration within the channel and (b) corresponding pressure profile along the channel’s longitudinal (y) axis under solid-liquid interaction $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 12  不同固-液相互作用强度条件下空化气泡溃灭前气泡内的蒸汽原子 (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $

    Figure 12.  Vapor atoms within cavitation bubbles immediately before collapse under different solid-liquid interaction strengths: (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    图 13  不同固-液相互作用强度条件下各部分的蒸发数量

    Figure 13.  Evaporation quantities of different components under various solid-liquid interaction strengths.

    图 14  不同固-液相互作用强度条件下弯液面与空化气泡蒸发数量占比

    Figure 14.  Proportion of evaporation quantities at meniscus and cavitation bubbles under various solid-liquid interaction strengths.

    图 15  确定液氩弯液面几何轮廓的计算原理图

    Figure 15.  Schematic diagram of the computational methodology for determining the geometric profile of the liquid argon meniscus.

    图 16  不同固-液相互作用强度下弯液面的几何轮廓及其曲率半径 (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}=4{\varepsilon }_{\mathrm{l}\mathrm{l}} $

    Figure 16.  Geometric profile of the meniscus and its radius of curvature under different solid-liquid interaction strengths: (a) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={\varepsilon }_{\mathrm{l}\mathrm{l}} $; (b) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={2\varepsilon }_{\mathrm{l}\mathrm{l}} $; (c) $ {\varepsilon }_{\mathrm{s}\mathrm{l}}={4\varepsilon }_{\mathrm{l}\mathrm{l}} $.

    表 1  不同固-液相互作用强度下液氩的理论物理性质

    Table 1.  Theoretical physical properties of liquid argon under different solid-liquid interaction intensities.

    固-液势能
    强度$ {\varepsilon }_{\mathrm{s}\mathrm{l}} $
    R/nm$ \gamma $/(mN·m–1)$ {P}_{\mathrm{c}} $/bar$ {P}_{\mathrm{v}} $/bar$ {P}_{\mathrm{l}} $/bar
    $ {\varepsilon }_{\mathrm{l}\mathrm{l}} $1.259.1573.203.22–69.98
    2$ {\varepsilon }_{\mathrm{l}\mathrm{l}} $1.239.375.612.82–72.79
    4$ {\varepsilon }_{\mathrm{l}\mathrm{l}} $1.249.2474.522.99–71.53
    DownLoad: CSV
  • [1]

    Cheng H F, Hu Y A, Zhao J F 2009 Environ. Sci. Technol. 43 240Google Scholar

    [2]

    Lu W Q, Xie S H, Zhou W S, Zhang S H, Liu A L 2008 Open Environ. Sci. 2 1

    [3]

    Huang J C, Zhang Y J, Bing H J, Peng J, Dong F F, Gao J F, Arhonditsis G B 2021 Water Res. 201 117309Google Scholar

    [4]

    Tao P, Ni G, Song C Y, Shang W, Wu J B, Zhu J, Deng T 2018 Nat. Energy 31031

    [5]

    Vélez-Cordero J R, Hernandez-Cordero J 2015 Int. J. Therm. Sci. 96 12Google Scholar

    [6]

    Kashyap V, Ghasemi H 2020 J. Mater. Chem. A 8 7035Google Scholar

    [7]

    Ni G, Li G, Boriskina S V, Li H X, Yang W L, Zhang T J, Chen G 2016 Nat. Energy 1 16126Google Scholar

    [8]

    Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G 2014 Nat. Commun. 5 4449Google Scholar

    [9]

    Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J 2013 ACS nano 7 42Google Scholar

    [10]

    Dai X, Yang F, Yang R, Lee Y C, Li C 2013 Int. J. Heat Mass Transf. 64 1101Google Scholar

    [11]

    Dai X M, Yang F H, Yang R G, Huang X Y, Rigdon WA, Li X D, Li C 2014 Appl. Phys. Lett. 105 191611Google Scholar

    [12]

    Huang Z, Chen B, Mo X B, Yang X L, Yu L Y, Hu X J, Liu K 2021 Adv. Mater. Interfaces 8 2100660Google Scholar

    [13]

    Lee W C, Ronghe A, Villalobos L F, Huang S, Dakhchoune M, Mensi M, Agrawal K V 2022 ACS Nano 16 15382Google Scholar

    [14]

    Lee P S, Garimella S V 2008 Int. J. Heat Mass Transf. 51 789Google Scholar

    [15]

    Steinke M E, Kandlikar S G 2004 J. Heat Transf. 126 518Google Scholar

    [16]

    Bar-Cohen A, Sheehan J R, Rahim E 2012 Microgravity Sci. Technol. 24 1Google Scholar

    [17]

    Lee J, Mudawar I 2005 Int. J. Heat Mass Transf. 48 941Google Scholar

    [18]

    Li Y X, Alibakhshi M A, Zhao Y H, Duan C H 2017 Nano Lett. 17 4813Google Scholar

    [19]

    Fan J C, Wu H A, Wang F C 2020 Phys. Fluids 32 12001Google Scholar

    [20]

    Maroo S C, Chung J N 2011 Nanoscale Res. Lett. 6 72Google Scholar

    [21]

    Sharma S, Debenedetti P G 2012 J. Phys. Chem. B 116 13282Google Scholar

    [22]

    Pati S, Som S K, Chakraborty S 2013 Int. J. Heat Mass Transf. 64 304Google Scholar

    [23]

    Duan C H, Karnik R, Lu M C, Majumdar A 2012 Proc. Natl. Acad. Sci. U. S. A. 109 3688Google Scholar

    [24]

    Barati Farimani A, Aluru N R 2016 J. Phys. Chem. C 120 23763[25]Chandra A, Keblinski P 2020 J. Chem. Phys. 153 12

    [25]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [26]

    Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983Google Scholar

    [27]

    Ohtomo N, Tanaka Y 1987 J. Phys. Soc. Jpn. 56 2801Google Scholar

    [28]

    梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿 2020 物理学报 69 224701Google Scholar

    Mei T, Chen Z X, Yang L, Zhu H M, Miao R C 2020 Acta Phys. Sin. 69 224701Google Scholar

    [29]

    Xie H, Xu Y Q, Zhong C 2022 Chin. Phys. B 31 114701Google Scholar

    [30]

    Doebele V, Benoit-Gonin A, Souris F 2020 Phys. Rev. Lett. 125 255701Google Scholar

    [31]

    叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 114702Google Scholar

    Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 114702Google Scholar

    [32]

    Maroo S C, Chung J N 2010 Int. J. Heat Mass Transf. 53 3335Google Scholar

  • [1] ZHANG Yanru, GAO Xiang, NING Hongyang, ZHANG Fujian, SONG Yunyun, ZHANG Zhongqiang, LIU Zhen. Molecular dynamics study on drag reduction mechanism of active gas layer at micro/nano fluid-solid interfaces. Acta Physica Sinica, doi: 10.7498/aps.74.20250289
    [2] JIA Yuhao, ZHANG Xiaomin, ZHAO Zhipeng, WU Qiong, ZHANG Linlin. Numerical analysis of synergistic cavitation effect of multiple bubbles in ultrasound thrombolysis. Acta Physica Sinica, doi: 10.7498/aps.74.20250430
    [3] Bai Pu, Wang Deng-Jia, Liu Yan-Feng. Molecular dynamics study on effect of wettability on boiling heat transfer of thin liquid films. Acta Physica Sinica, doi: 10.7498/aps.73.20232026
    [4] Zhang Chao, Bu Long-Xiang, Zhang Zhi-Chao, Fan Zhao-Xia, Fan Feng-Xian. Molecular dynamics study on the surface tension of succinic acid-water nano-aerosol droplets. Acta Physica Sinica, doi: 10.7498/aps.72.20222371
    [5] Zhu Xiao-Long, Chen Wei, Wang Feng, Wang Zheng-Xiong. Hybrid numerical simulation on fast particle transport induced by synergistic interaction of low- and medium-frequency magnetohydrodynamic instabilities in tokamak plasma. Acta Physica Sinica, doi: 10.7498/aps.72.20230620
    [6] Zhao Zhong-Hua, Qu Guang-Hao, Yao Jia-Chi, Min Dao-Min, Zhai Peng-Fei, Liu Jie, Li Sheng-Tao. Molecular dynamics simulation of phase transition by thermal spikes in monoclinic ZrO2. Acta Physica Sinica, doi: 10.7498/aps.70.20201861
    [7] Yang Gang, Zheng Ting, Cheng Qi-Hao, Zhang Hui-Chen. Molecular dynamics simulation on shear thinning characteristics of non-Newtonian fluids. Acta Physica Sinica, doi: 10.7498/aps.70.20202116
    [8] Chen Xian, Zhang Jing, Tang Zhao-Huan. Molecular dynamics study of release mechanism of stress at Si/Ge interface on a nanoscale. Acta Physica Sinica, doi: 10.7498/aps.68.20181530
    [9] Yin Ling-Kang, Xu Shun, Seongmin Jeong, Yongseok Jho, Wang Jian-Jun, Zhou Xin. Vapor-liquid coexisting morphology of all-atom water model through generalized isothermal isobaric ensemble molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.66.136102
    [10] Qiu Chao, Zhang Hui-Chen. Molecular dynamics simulation on cavitation bubble formation in canonical ensemble. Acta Physica Sinica, doi: 10.7498/aps.64.033401
    [11] Wang Jian-Wei, Song Yi-Xu, Ren Tian-Ling, Li Jin-Chun, Chu Guo-Liang. Molecular dynamics simulation of Lag effect in fluorine plasma etching Si. Acta Physica Sinica, doi: 10.7498/aps.62.245202
    [12] Ke Chuan, Zhao Cheng-Li, Gou Fu-Jun, Zhao Yong. Molecular dynamics study of interaction between the H atoms and Si surface. Acta Physica Sinica, doi: 10.7498/aps.62.165203
    [13] Qiu Feng, Wang Meng, Zhou Hua-Guang, Zheng Xuan, Lin Xin, Huang Wei-Dong. Molecular dynamics simulation of the wetting behavior of Pb droplet on Ni substrate. Acta Physica Sinica, doi: 10.7498/aps.62.120203
    [14] Zhou Hua-Guang, Lin Xin, Wang Meng, Huang Wei-Dong. Calculation of crystal-melt interfacial free energy of Cu by molecular dynamics simulation. Acta Physica Sinica, doi: 10.7498/aps.62.056803
    [15] Zhao Cheng-Li, Lü Xiao-Dan, Ning Jian-Ping, Qing You-Min, He Ping-Ni, Gou Fu-Jun. Molecular dynamics simulations of energy effectson atorn F interaction with SiC(100). Acta Physica Sinica, doi: 10.7498/aps.60.095203
    [16] Qin You-Min, Zhao Cheng-Li, He Ping-Ni, Gou Fu-Jun, Ning Jian-Ping, Lü Xiao-Dan, Bogaerts A.. Molecular dynamics simulation of temperature effects on CF+3 etching of Si surface. Acta Physica Sinica, doi: 10.7498/aps.59.7225
    [17] Wang Wei, Zhang Kai-Wang, Meng Li-Jun, Li Zhong-Qiu, Zuo Xue-Yun, Zhong Jian-Xin. Molecular dynamics simulation of the evaporation of the surface wall of multi-wall carbon nanotubes at high temperature. Acta Physica Sinica, doi: 10.7498/aps.59.2672
    [18] Wang Hai-Long, Wang Xiu-Xi, Liang Hai-Yi. Molecular dynamics simulation of strain effects on surface melting for metal Cu. Acta Physica Sinica, doi: 10.7498/aps.54.4836
    [19] Chen Jun, Jing Fu-Qian, Zhang Jing-Lin, Chen Dong-Quan. . Acta Physica Sinica, doi: 10.7498/aps.51.2386
    [20] Zhang Chao, Lv Hai-Feng, Zhang Qing-Yu. . Acta Physica Sinica, doi: 10.7498/aps.51.2329
Metrics
  • Abstract views:  325
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  13 July 2025
  • Accepted Date:  14 August 2025
  • Available Online:  17 September 2025
  • /

    返回文章
    返回