-
Liquid evaporation at the nanoscale is significantly enhanced by microscopic effects, with its rate even exceeding the predicted upper limit of the classical HertzKnudsen equation. This property makes nanoscale liquid evaporation highly valuable for applications in solar-driven interfacial evaporation, electronics cooling, and microfluidics. However, existing research predominantly focuses on the influence of individual microscopic effects, leaving the synergistic mechanisms of multiple effects poorly understood. To deeply reveal the microscopic mechanism of liquid phase change at the nanoscale, this study employs liquid argon as a model system to systematically investigate the synergistic effect of potential energy and cavitation on its evaporation. Using molecular dynamics simulations, we studied the evaporation process of liquid argon within nanochannels characterized by different solid-liquid interaction strengths under identical temperature and time frames. The results indicate that an increase in the solid-liquid interaction strength reduces the average potential energy of liquid argon and increases the evaporation energy barrier, which theoretically should suppress evaporation. Nevertheless, the capillary pressure induced by the increased meniscus curvature leads to negative pressure within the liquid argon, triggering a cavitation effect. This cavitation generates bubbles inside the liquid argon, which significantly increases the evaporation surface area and consequently promotes evaporation. Furthermore, the meniscus-dominated evaporation mode is gradually weakened, while the contribution from cavitation bubbles becomes increasingly pronounced. This study demonstrates that the evaporation rates of liquid argon in the four nanochannels with different interaction strengths are 3.49×10-14 kg/s, 3.95×10-14 kg/s, 3.02×10-14 kg/s, and 2.44×10-14 kg/s, respectively. Therefore, it is concluded that the evaporation rate does not vary linearly with increasing solid-liquid interaction strength. Instead, the synergistic state between potential energy and the cavitation effect is optimized at a medium interaction strength, leading to a maximum evaporation rate.
-
Keywords:
- Molecular dynamics /
- Nanoscale evaporation /
- Liquid argon potential energy /
- Cavitation effect /
- Synergistic interaction
-
[1] Cheng H, Hu Y, Zhao J 2009 Environ. Sci. Technol. 43 240
[2] Lu W Q, Xie S H, Zhou W S, Zhang S H, Liu A L 2008 Open Environ. Sci. 21
[3] Huang J, Zhang Y, Bing H, Peng J, Dong F, Gao J, Arhonditsis G B 2021 Water Res. 201 117309
[4] Tao P, Ni G, Song C, Shang W, Wu J, Zhu J, Deng T 2018 Nat. Energy 3 1031
[5] Vélez-Cordero J R, Hernandez-Cordero J 2015 Int. J. Therm. Sci. 96 12
[6] Kashyap V, Ghasemi H 2020 J. Mater. Chem. A 8 7035
[7] Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T, Chen G 2016 Nat. Energy 1 1
[8] Ghasemi H, Ni G, Marconnet A M, Loomis J, Yerci S, Miljkovic N, Chen G 2014 Nat. Commun. 5 4449
[9] Neumann O, Urban A S, Day J, Lal S, Nordlander P, Halas N J 2013 ACS nano 7 42
[10] Ni G, Li G, Boriskina S V, Li H, Yang W, Zhang T, Chen G 2016 Nat. Energy 1 1
[11] Dai X, Yang F, Yang R, Huang X, Rigdon WA, Li X, Li C 2014 Appl. Phys. Lett. 105 191611
[12] Huang Z, Chen B, Mo X, Yang X, Yu L, Hu X, Liu K 2021 Adv. Mater. Interfaces 8 2100660
[13] Lee W C, Ronghe A, Villalobos L F, Huang S, Dakhchoune M, Mensi M, Agrawal K V 2022 ACS nano 16 15382
[14] Lee P S, Garimella S V 2008 Int. J. Heat Mass Transf. 51 789
[15] Steinke M E, Kandlikar S G 2004 J. Heat Transf. 126 518
[16] Bar-Cohen A, Sheehan J R, Rahim E 2012 Microgravity Sci. Technol. 24 1
[17] Lee J, Mudawar I 2005 Int. J. Heat Mass Transf. 48 941
[18] Li Y, Alibakhshi M A, Zhao Y, Duan C 2017 Nano Lett. 17 4813
[19] Fan J C, Wu H A, Wang F C 2020 Phys. Fluids 32 12001
[20] Maroo S C, Chung J N 2011 Nanoscale Res. Lett. 6 72
[21] Sharma S, Debenedetti P G 2012 J. Phys.Chem. B 116 13282
[22] Pati S, Som S K, Chakraborty S 2013 Int. J. Heat Mass Transf. 64 304
[23] Duan C, Karnik R, Lu M C, Majumdar A 2012 Proc. Natl. Acad. Sci. U.S.A. 109 3688
[24] Agrawal K V, Shimizu S, Drahushuk LW, Kilcoyne D, Strano M S 2017 Nat. Nanotechnol. 12 267
[25] Chandra A, Keblinski P 2020 J. Chem. Phys. 153 12
[26] Plimpton S 1995 J. Comput. Phys. 117 1
[27] Foiles S M, Baskes M I, Daw M S 1986 Phys. Rev. B 33 7983
[28] Ohtomo N, Tanaka Y 1987 J. Phys. Soc. Jpn. 56 2801
[29] Mei T, Chen Z X, Yang L, Zhu H M, Miao R C 2020 Acta Phys. Sin. 69 224701 (in Chinese) [梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿 2020 物理学报 69 224701]
[30] Xie H, Xu Y Q, Zhong C 2022 Chin. Phys. B 31 114701
[31] Doebele V, Benoit-Gonin A, Souris F 2020 Phys. Rev.Lett. 125 255701
[32] Ye X M, Zhang X S, Li M L, Li C X 2018 Acta Phys. Sin. 67 114702 (in Chinese) [叶学民, 张湘珊, 李明兰, 李春曦 2018 物理学报 67 114702]
[33] Maroo S C, Chung J N 2010 Int. J. Heat Mass Transf. 53 3335
Metrics
- Abstract views: 24
- PDF Downloads: 0
- Cited By: 0