-
The band gap, localization, and waveguide characteristics of phononic crystal structures offer extensive potential for applications in the transducer field, particularly for circular-hole phononic crystals, which are extensively utilized in performance optimization research for transducers owing to their straightforward structure and ease of fabrication. Nonetheless, studies have revealed that the bandgap width of circular-hole phononic crystal structures is directly proportional to their porosity. Typically, a higher porosity leads to enhanced energy localization of elastic waves. However, high porosity implies a narrower distance between circular holes, drastically compromising the mechanical strength of the structure. The introduction of columnar phononic crystal structures addresses the issues of high porosity and stringent dimensional accuracy demands of circular-hole phononic crystal structures, presenting novel avenues for enhancing the performance of piezoelectric ultrasonic transducers.
The paper employs cylindrical and acoustic surface structures fabricated on the front and rear cover plates of piezoelectric ultrasonic transducers to manipulate the transmission behavior and pathway of sound waves, thereby achieving effective control over coupled vibrations within the transducer. This approach not only addresses the issue of uneven amplitude distribution on the radiation surface due to uneven vibration energy transmission but also markedly enhances the displacement amplitude of the transducer's radiation surface, ultimately boosting its operational efficiency. Simulation results elucidate the impact of the configuration of these cylindrical and acoustic surface structures on transducer performance. Experimental findings further validate that these structures can effectively elevate the performance of piezoelectric ultrasonic transducers. This research offers systematic design theoretical support for the engineering calculation and optimization of transducers.-
Keywords:
- Porous phononic crystals /
- columnar and acoustic surface structures /
- piezoelectric ultrasonic transducers /
- performance optimization
-
[1] Fu J F, Lin B, Sui T Y, Dong B K 2025 Ultrasonics 148 107533-1. DOI: 10.1016/J.ULTRAS.2024.107533
[2] Takeda K., Tanaka H., Tsuchiya T., Kaneko S. 1998 Ultrasonics 36 75. https://doi.org/10.1016/S0041-624X(97)00077-2.
[3] Kengo N, Watanabe Y 2006 Jpn. J. Appl. Phys. 45 4812. DOI 10.1143/JJAP.45.4812.
[4] Bendikiene R, Kavaliauskiene L, Borkys M 2021 CIRP J. Manu. Sci. Tech. 35 872. DOI: 10.1016/j.cirpj.2021.10.002.
[5] Peters D 1996 J. Mater. Chem. 6 1605. DOI:10.1039/jm9960601605.
[6] An D, Huang Y K, Li J G, Huang W Q 2025 Inter. J. Prec. Eng. & Manu. 26 559. DOI: 10.1007/s12541-024-01123-3.
[7] Li Y X, Ye S Y, Long Z L, Ju J Z, Zhao H 2025 Sensors and Actuators A: Physical 381 116037-1. https://doi.org/10.1016/j.sna.2024.116037.
[8] Wang J H, Ji H W, Anqi Q, Liu Y, Lin L M, Wu X, Ni J 2023 Materials 16 5812. https://doi.org/10.3390/ma16175812.
[9] Ronda S, Francisco M de E. 2018 Advances in Applied Ceramics 117 177. DOI: 10.1080/17436753.2017.1391974
[10] Li Z X 2022 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese) [ 李照希 2022 博士学位论文 (西安: 西安电子科技大学)].
[11] Qin Z J 2023 M.S. Thesis (Taiyuan: North University of China) (in Chinese) [秦振杰 2023 硕士学位论文 (太原: 中北大学)]
[12] Zhang L J 2022 M.S. Thesis (Zhenjiang: Jiangsu University) (in Chinese) [张利娟 2022 硕士学位论文 (镇江: 江苏大学)]
[13] Song M X 2020 M.S. Thesis (Beijing: University of Chinese Academy of Sciences) (in Chinese) [宋明鑫 2020 硕士学位论文 (北京: 中国科学院大学)]
[14] Wang Y P 2023 M.S. Thesis (Guangzhou: Guangdong University of Technology) (in Chinese) [王燕萍 2023 硕士学位论文 (广州: 广东工业大学)]
[15] Lin J Y, Lin S Y, Wang S, Li Y 2021 SCIENTIA SINICA Physica, Mechanica & Astronomica. 51 96(in Chinese)[林基艳, 林书玉, 王升, 李耀 2021 中国科学: 物理学 力学 天文学 51 96] https://doi.org/10.1360/SSPMA-2021-0004.
[16] Li J 2021 Ph. D. Dissertation (Taiyuan: North University of China) (in Chinese) [ 李婧 2021 博士学位论文 (太原: 中北大学)].
[17] Wang S,Chen C, Hu Liqing, Lin S Y 2022 J. ACOUST. SOC. AM. 152 193. DOI: 10.1121/10.0011790.
[18] Wang S, Shan J J, Lin S Y 2022 Ultrasonics 120 106640-1. https://doi.org/10.1016/j.ultras.2021.106640.
[19] Sun X Y, Yan Q, Guo X Y 2021 J. SYNT. CRYS. 50 1378(in Chinese)[孙向洋, 燕群, 郭翔鹰 2021 人工晶体学报 50 1378] DOI:10.16553/j.cnki.issn1000-985x.20210623.002.
[20] Chen X R 2021 M.S. Thesis (Lanzhou: Lanzhou University) (in Chinese) [程晓茹 2021 硕士学位论文 (兰州: 兰州大学)]
[21] Yu L L 2023 M.S. Thesis (Taiyuan: North University of China) (in Chinese) [尉浪浪 2023 硕士学位论文 (太原: 中北大学)]
[22] Tan Z H 2021 M.S. Thesis (Lanzhou: Lanzhou Jiaotong University) (in Chinese) [谭自豪 2021 硕士学位论文 (兰州: 兰州交通大学)]
[23] Zhang M, Wen X D, Sun X W, Liu X X, Song T, Liu Z J 2024 Nois.& Vibr. Cont. 44 96(in Chinese)[张敏, 温晓东, 孙小伟, 刘禧萱, 宋婷, 刘子江 2024 噪声与振动控制 44 96] DOI: 10.3969/j.issn.1006-1355.2024.04.015
[24] Qin Z J, Wang H L, Zhang H Q, Ding Q, Huang X, Zhu J J, Ren R, Sun X L 2023 Trans. Inst. Meas. &Cont. 45 674. DOI: 10.1177/01423312221119586.
[25] Hu F B, Cheng L N, Fan S Y, Xue X F, Liang Y, Lu M H, Wang W 2022 Sens. & Actu.:A. Physical 333 113298-1 . DOI:10.1016/j.sna.2021.113298.
[26] Dryburgh P,Smith J R,Marrow P, Laine S, Sharples S, Clark M, Li W Q 2020 Ultrasonics 108 106171-1. DOI: 10.1016/j.ultras.2020.106171.
[27] Zhang Q Z, Guo J Q, Qin P, Tang G B, Zhang B F, Hashimoto K, Han T, Li P, Wen Y M 2018 Ultrasonics 88 131. DOI: 10.1016/j.ultras.2018.03.017.
Metrics
- Abstract views: 135
- PDF Downloads: 1
- Cited By: 0