Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Generation and discharge characteristics of indirect dielectric barrier discharge with meter-scale width

LI Long CUI Xinglei ZHU Xi FANG Zhi

Citation:

Generation and discharge characteristics of indirect dielectric barrier discharge with meter-scale width

LI Long, CUI Xinglei, ZHU Xi, FANG Zhi
cstr: 32037.14.aps.74.20251163
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • A meter-scale wide indirect dielectric barrier discharge (DBD) for treating large-scale and irregular-shaped materials is reported in this study. The structure of the modular-graded gas path is designed, and the influence of gas hole density on the flow field is simulated. It is confirmed that 8 subdividing (40 holes uniformly distributed) structure can effectively improve the uniformity of the gas flow rate distribution in the discharge area and on the treated material surface compared with 0 subdividing structure. Based on this structure, Ar is employed as the discharge gas and hexamethyldisilane as the precursor to generate meter-scale wide plasma under the excitation of a nanosecond pulsed power supply. Particle activity, discharge uniformity and stability under different operating parameters are evaluated by measuring voltage-current waveforms, emission spectra, luminescence images and temperatures at different electrode positions. The treatment effect and uniformity are verified by measuring the water contact angle (WCA) of epoxy (EP) material. The results show that a uniform and stable plasma with a width of 1120 mm is generated under suitable operating parameters. By increasing the voltage amplitude, both the discharge intensity and particle activity are improved, while the discharge uniformity and stability are significantly reduced. By increasing the discharge gas flow rate, the particle activity, discharge uniformity, and stability can be improved simultaneously but slightly. The WCA on the EP surface is uniformly increased from 67° to 144° with a variation of less than 6% after 10-min treatment at a voltage amplitude of 12 kV and a discharge gas flow rate of 10 L/min. The meter-scale wide indirect DBD electrode in this work can provide reference and basis for the industrial application of large-scale plasma material modification technology.
      Corresponding author: FANG Zhi, myfz@263.net
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 52037004, 52377148).
    [1]

    Jaiswal M, Srivastava B 2025 Postharvest Biol. Technol. 229 113681Google Scholar

    [2]

    Wirth P, Oberste-Beulmann C, Nitsche T, Muhler M, Awakowicz P 2024 Chem. Ing. Tech. 96 1237Google Scholar

    [3]

    Arora G, Hoffer P, Prukner V, Bílek P, Šimek M 2024 Plasma Sources Sci. Technol. 33 025025Google Scholar

    [4]

    徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁 2021 物理学报 70 099401Google Scholar

    Xu Y, Wang Z L, Qin S C, Zhang Y, He T, Guo Y, Ding L, Zhang Y R, Yang W, Shi J J, Du C R, Zhang J 2021 Acta Phys. Sin. 70 099401Google Scholar

    [5]

    Yi T C, Sun C L, Dong J C, Han D D, Bao L, Wang Z W, Cai Y M, Zhang X 2025 IEEE Electron. Device Lett. 46 757Google Scholar

    [6]

    Pernica R, Klima M, Fiala P 2024 Meas. Sci. Rev. 24 215Google Scholar

    [7]

    李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪 2013 物理学报 62 165205Google Scholar

    Li X C, Chang Y Y, Liu R P, Zhao H H, Di C 2013 Acta Phys. Sin. 62 165205Google Scholar

    [8]

    Sony F L, Li F, Zhu M D, Wang L, Gong H, Gan Y Q, Jin X 2017 Plasma Sci. Technol. 20 014013Google Scholar

    [9]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci. T. 27 115005Google Scholar

    [10]

    Zhu X, Li F S, Guan X H, Xu J G, Cui X L, Huang J L, Liu F, Fang Z 2022 Eur. Polym. J. 181 111656Google Scholar

    [11]

    Zeniou A, Puač N, Škoro N, Selaković N, Dimitrakellis P, Gogolides E, Petrović Z L 2017 J. Phys. D: Appl. Phys. 50 135204Google Scholar

    [12]

    Hasan M I, Walsh J L 2017 Appl. Phys. Lett. 110 134102Google Scholar

    [13]

    Rhouma S, Megriche A, Souidi E, Said S, Autret-Lambert C 2025 J. Mater. Sci. Mater. 36 1Google Scholar

    [14]

    王江琼, 李维康, 张文业, 万宝全, 查俊伟 2024 物理学报 73 078801Google Scholar

    Wang H Q, Li W K, Zhang W Y, Wang B Q, Cha J W 2024 Acta Phys. Sin. 73 078801Google Scholar

    [15]

    Resner L, Lesiak P, Taraghi I, Kochmanska A, Figiel P, Piesowicz E, Zenker M, Paszkiewicz S 2022 Polymers. 14 3444Google Scholar

    [16]

    Peters F, Hünnekens B, Wieneke S, Militz H, Ohms G, Viöl W 2017 J. Phys. D: Appl. Phys. 50 475206Google Scholar

    [17]

    韩国新, 武珈存, 贾焓潇, 王雪芳, 贾鹏英 2023 河北大学学报 43 369

    Han G X, Wu J C, Jia Y X, Wang X F, Jia P Y 2023 J. Hebei Univ. 43 369

    [18]

    Stancu E C, Ionita M D, Ionita E R, Teodorescu M, Radu M T, Dinescu G 2018 Rom. J. Phys. 63 705

    [19]

    Kang W S, Kim H S, Hong S H 2010 Thin Solid Films 518 6578Google Scholar

    [20]

    Portugal S, Choudhury B , Cardenas D 2022 Front. Phys. 10 797Google Scholar

    [21]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 物理学报 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [22]

    田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞 2025 物理学报 74 115202Google Scholar

    Tian S, Zhang H, Zhang X, Zhang X X, Li X C, Li Q, Ran J X 2025 Acta Phys. Sin. 74 115202Google Scholar

    [23]

    Zhang C, Huang B D, Luo Z B, Che X K, Yan P, Shao T 2019 Plasma Sources Sci. Technol. 28 064001Google Scholar

    [24]

    Neretti G, Popoli A, Scaltriti S G, Cristofolini A 2022 Electronics 11 1536Google Scholar

    [25]

    Alves L L, Bogaerts A, Guerra V, Turner M M 2018 Plasma Sources Sci. Technol. 27 023002Google Scholar

    [26]

    Pourali N, Sarafraz M M, Hessel V, Rebrov E V 2021 Phys. Plasmas 28 013502Google Scholar

    [27]

    Xu Z, Pillai K M 2016 Numer. Heat Tr. A-Appl. 70 1213Google Scholar

    [28]

    Zhu X, Guan X H, Luo Z R, Wang L Y, Dai L Y, Wu Z X, Fang Z J, Cui X L, Akram X, Fang Z 2024 J. Phys. D Appl. Phys. 57 275203Google Scholar

    [29]

    Zhang J L, Sun J, Wang D Z, Wang X G 2006 Thin Solid Films 506 404Google Scholar

    [30]

    张龙龙, 崔行磊, 刘峰, 方志 2021 电工技术学报 36 3135

    Zhang L L, Cui X, Liu F, Fang Z 2021 Trans. China Electrotechn. Soc. 36 3135

    [31]

    Chen Z C, Cheng Y, Lin C C, Li C S, Hsu C C, Chen J Z, Cheng I C 2019 Appl. Surf. Sci. 473 468Google Scholar

    [32]

    Deng X T, Kong M G 2004 IEEE Trans. Plasma Sci. 32 1709Google Scholar

    [33]

    Liu F, Chu H J, Zhuang Y, Fang Z, Zhou R W, Cullen P J, Ostrikov K K 2021 J. Appl. Phys. 129 033302Google Scholar

    [34]

    Zhou W H, Zhang D, Duan X, Zhu X, Liu F, Fang Z 2024 Plasma Sci Techno. 26 094008Google Scholar

    [35]

    Chen S L, Wang S, Wang Y B, Guo B H, Li G Q, Chang Z S, Zhang G J 2017 Appl. Surf. Sci. 414 107Google Scholar

    [36]

    Yambe K, Taka S, Ogura K 2014 IEEJ Trans. Electr. Electron. Eng. 9 S13Google Scholar

    [37]

    Li J Z, Xu J G, Liu F, Fang Z 2022 IEEE Trans. Plasma Sci. 50 1823Google Scholar

    [38]

    Jin S B, Lee J S, Choi Y S, Choi I S, Han J G 2011 Thin Solid Films 519 6334Google Scholar

    [39]

    Zhang X Y, Chen L, Guan T Y, Wang B H, Wang S A, Yang H Y, Song P 2024 Phys. Scr. 99 025606Google Scholar

    [40]

    Uchida G, Nakajima A, Takenaka K, Koga K, Shiratani M, Setsuhara Y 2015 IEEE Trans. Plasma Sci. 43 4081Google Scholar

    [41]

    邵先军, 张冠军, 詹江杨, 李娅西, 张增辉, 彭兆裕 2011 高电压技术 37 1499

    Shao X J, Zhang G J, Zhan J Y 2011 High Volt. Eng. 37 1499

    [42]

    Demirskyi D, Sepehri-Amin H, Vasylkiv O O 2025 Int. J. Appl. Ceram. Tec. 22 e14967.Google Scholar

    [43]

    Cui X L, Li L, Xu Z B, Zhu X, Akram S, Fang Z 2024 J. Vac. Sci. Technol. A 42 043005Google Scholar

    [44]

    Liang F W, Luo H H, Zhuang W J, Liang Z D, Fan X H, Chen S, Sun Q Q 2025 J. Phys. D Appl. Phys. 58 185501Google Scholar

  • 图 1  米量级宽幅间接DBD电极结构设计 (a) 电极示意图; (b) 电极实物图

    Figure 1.  Structural design of the meter-scale wide indirect DBD: (a) Schematic diagram; (b) photo of the electrode.

    图 2  米量级宽幅间接DBD电极流场仿真 (a) 不同结构下工作气体流速的流线; (b), (c) 不同结构下处理材料表面流速分布; (d) 不同工作气体流速下的放电区域和材料表面流速分布

    Figure 2.  Flow field simulation of the meter-scale wide indirect DBD: (a) Ar flow streamlines of gas flow rate under different structures; (b), (c) flow rate distributions on the treated material surface for different structures; (d) flow rate distributions in the discharge region and on the material surface for different total gas flow rates.

    图 3  实验平台示意图

    Figure 3.  Schematic diagram of the experiment platform.

    图 4  典型电压电流波形

    Figure 4.  Typical voltage-current waveforms.

    图 5  不同条件下的电流幅值均值和标准差 (a) 不同电压幅值; (b) 工作气体流速

    Figure 5.  Mean value and standard deviation of current amplitude under various conditions: (a) Voltage amplitude; (b) gas flow rates.

    图 6  典型放电的发光图像

    Figure 6.  Luminescence image of typical discharge.

    图 7  不同电压幅值和工作气体流速下的DBD放电图像

    Figure 7.  Discharge images of DBD at different voltage amplitudes and gas flow rates.

    图 8  典型发射光谱

    Figure 8.  Typical emission spectra.

    图 9  放电区域内电场分布

    Figure 9.  Electric field in the discharge area.

    图 10  不同条件下的Ar(763.51)光谱强度 (a) 电压幅值; (b) 工作气体流速

    Figure 10.  Ar(763.51) intensity under different conditions: (a) Voltage amplitude; (b) gas flow rate.

    图 11  不同放电时间下不同位置的温度 (a) 2 min; (b) 10 min; (c) 温升曲线

    Figure 11.  Temperatures at different positions for different discharge durations: (a) 2 min; (b) 10 min; (c) electrode temperature rise.

    图 12  不同条件下电极温度 (a) 电压幅值; (b) 工作气体流速

    Figure 12.  Electrode temperatures under different conditions: (a) Voltage amplitude; (b) gas flow rates.

    图 13  不同条件下改性后WCA变化 (a) 不同位置; (b) 不同电压幅值; (c) 不同工作气体流速; (d) WCA与电流幅值; (e) WCA标准差与GVSD

    Figure 13.  WCA under different conditions: (a) Different positions; (a) voltage amplitude; (b) gas flow rates; (d) WCA and current amplitude; (e) WCA standard deviation and GVSD.

  • [1]

    Jaiswal M, Srivastava B 2025 Postharvest Biol. Technol. 229 113681Google Scholar

    [2]

    Wirth P, Oberste-Beulmann C, Nitsche T, Muhler M, Awakowicz P 2024 Chem. Ing. Tech. 96 1237Google Scholar

    [3]

    Arora G, Hoffer P, Prukner V, Bílek P, Šimek M 2024 Plasma Sources Sci. Technol. 33 025025Google Scholar

    [4]

    徐雨, 王超梁, 覃思成, 张宇, 何涛, 郭颖, 丁可, 张钰如, 杨唯, 石建军, 杜诚然, 张菁 2021 物理学报 70 099401Google Scholar

    Xu Y, Wang Z L, Qin S C, Zhang Y, He T, Guo Y, Ding L, Zhang Y R, Yang W, Shi J J, Du C R, Zhang J 2021 Acta Phys. Sin. 70 099401Google Scholar

    [5]

    Yi T C, Sun C L, Dong J C, Han D D, Bao L, Wang Z W, Cai Y M, Zhang X 2025 IEEE Electron. Device Lett. 46 757Google Scholar

    [6]

    Pernica R, Klima M, Fiala P 2024 Meas. Sci. Rev. 24 215Google Scholar

    [7]

    李雪辰, 常媛媛, 刘润甫, 赵欢欢, 狄聪 2013 物理学报 62 165205Google Scholar

    Li X C, Chang Y Y, Liu R P, Zhao H H, Di C 2013 Acta Phys. Sin. 62 165205Google Scholar

    [8]

    Sony F L, Li F, Zhu M D, Wang L, Gong H, Gan Y Q, Jin X 2017 Plasma Sci. Technol. 20 014013Google Scholar

    [9]

    Motrescu I, Ciolan M A, Sugiyama K, Kawamura N, Nagatsu M 2018 Plasma Sources Sci. T. 27 115005Google Scholar

    [10]

    Zhu X, Li F S, Guan X H, Xu J G, Cui X L, Huang J L, Liu F, Fang Z 2022 Eur. Polym. J. 181 111656Google Scholar

    [11]

    Zeniou A, Puač N, Škoro N, Selaković N, Dimitrakellis P, Gogolides E, Petrović Z L 2017 J. Phys. D: Appl. Phys. 50 135204Google Scholar

    [12]

    Hasan M I, Walsh J L 2017 Appl. Phys. Lett. 110 134102Google Scholar

    [13]

    Rhouma S, Megriche A, Souidi E, Said S, Autret-Lambert C 2025 J. Mater. Sci. Mater. 36 1Google Scholar

    [14]

    王江琼, 李维康, 张文业, 万宝全, 查俊伟 2024 物理学报 73 078801Google Scholar

    Wang H Q, Li W K, Zhang W Y, Wang B Q, Cha J W 2024 Acta Phys. Sin. 73 078801Google Scholar

    [15]

    Resner L, Lesiak P, Taraghi I, Kochmanska A, Figiel P, Piesowicz E, Zenker M, Paszkiewicz S 2022 Polymers. 14 3444Google Scholar

    [16]

    Peters F, Hünnekens B, Wieneke S, Militz H, Ohms G, Viöl W 2017 J. Phys. D: Appl. Phys. 50 475206Google Scholar

    [17]

    韩国新, 武珈存, 贾焓潇, 王雪芳, 贾鹏英 2023 河北大学学报 43 369

    Han G X, Wu J C, Jia Y X, Wang X F, Jia P Y 2023 J. Hebei Univ. 43 369

    [18]

    Stancu E C, Ionita M D, Ionita E R, Teodorescu M, Radu M T, Dinescu G 2018 Rom. J. Phys. 63 705

    [19]

    Kang W S, Kim H S, Hong S H 2010 Thin Solid Films 518 6578Google Scholar

    [20]

    Portugal S, Choudhury B , Cardenas D 2022 Front. Phys. 10 797Google Scholar

    [21]

    刘坤, 左杰, 周雄峰, 冉从福, 杨明昊, 耿文强 2023 物理学报 72 055201Google Scholar

    Liu K, Zuo J, Zhou X F, Ran C F, Yang M H, Geng W Q 2023 Acta Phys. Sin. 72 055201Google Scholar

    [22]

    田爽, 张寒, 张喜, 张雪雪, 李雪辰, 李庆, 冉俊霞 2025 物理学报 74 115202Google Scholar

    Tian S, Zhang H, Zhang X, Zhang X X, Li X C, Li Q, Ran J X 2025 Acta Phys. Sin. 74 115202Google Scholar

    [23]

    Zhang C, Huang B D, Luo Z B, Che X K, Yan P, Shao T 2019 Plasma Sources Sci. Technol. 28 064001Google Scholar

    [24]

    Neretti G, Popoli A, Scaltriti S G, Cristofolini A 2022 Electronics 11 1536Google Scholar

    [25]

    Alves L L, Bogaerts A, Guerra V, Turner M M 2018 Plasma Sources Sci. Technol. 27 023002Google Scholar

    [26]

    Pourali N, Sarafraz M M, Hessel V, Rebrov E V 2021 Phys. Plasmas 28 013502Google Scholar

    [27]

    Xu Z, Pillai K M 2016 Numer. Heat Tr. A-Appl. 70 1213Google Scholar

    [28]

    Zhu X, Guan X H, Luo Z R, Wang L Y, Dai L Y, Wu Z X, Fang Z J, Cui X L, Akram X, Fang Z 2024 J. Phys. D Appl. Phys. 57 275203Google Scholar

    [29]

    Zhang J L, Sun J, Wang D Z, Wang X G 2006 Thin Solid Films 506 404Google Scholar

    [30]

    张龙龙, 崔行磊, 刘峰, 方志 2021 电工技术学报 36 3135

    Zhang L L, Cui X, Liu F, Fang Z 2021 Trans. China Electrotechn. Soc. 36 3135

    [31]

    Chen Z C, Cheng Y, Lin C C, Li C S, Hsu C C, Chen J Z, Cheng I C 2019 Appl. Surf. Sci. 473 468Google Scholar

    [32]

    Deng X T, Kong M G 2004 IEEE Trans. Plasma Sci. 32 1709Google Scholar

    [33]

    Liu F, Chu H J, Zhuang Y, Fang Z, Zhou R W, Cullen P J, Ostrikov K K 2021 J. Appl. Phys. 129 033302Google Scholar

    [34]

    Zhou W H, Zhang D, Duan X, Zhu X, Liu F, Fang Z 2024 Plasma Sci Techno. 26 094008Google Scholar

    [35]

    Chen S L, Wang S, Wang Y B, Guo B H, Li G Q, Chang Z S, Zhang G J 2017 Appl. Surf. Sci. 414 107Google Scholar

    [36]

    Yambe K, Taka S, Ogura K 2014 IEEJ Trans. Electr. Electron. Eng. 9 S13Google Scholar

    [37]

    Li J Z, Xu J G, Liu F, Fang Z 2022 IEEE Trans. Plasma Sci. 50 1823Google Scholar

    [38]

    Jin S B, Lee J S, Choi Y S, Choi I S, Han J G 2011 Thin Solid Films 519 6334Google Scholar

    [39]

    Zhang X Y, Chen L, Guan T Y, Wang B H, Wang S A, Yang H Y, Song P 2024 Phys. Scr. 99 025606Google Scholar

    [40]

    Uchida G, Nakajima A, Takenaka K, Koga K, Shiratani M, Setsuhara Y 2015 IEEE Trans. Plasma Sci. 43 4081Google Scholar

    [41]

    邵先军, 张冠军, 詹江杨, 李娅西, 张增辉, 彭兆裕 2011 高电压技术 37 1499

    Shao X J, Zhang G J, Zhan J Y 2011 High Volt. Eng. 37 1499

    [42]

    Demirskyi D, Sepehri-Amin H, Vasylkiv O O 2025 Int. J. Appl. Ceram. Tec. 22 e14967.Google Scholar

    [43]

    Cui X L, Li L, Xu Z B, Zhu X, Akram S, Fang Z 2024 J. Vac. Sci. Technol. A 42 043005Google Scholar

    [44]

    Liang F W, Luo H H, Zhuang W J, Liang Z D, Fan X H, Chen S, Sun Q Q 2025 J. Phys. D Appl. Phys. 58 185501Google Scholar

  • [1] TIAN Shuang, ZHANG Han, ZHANG Xi, ZHANG Xuexue, LI Xuechen, LI Qing, RAN Junxia. Discharge characteristics and parameter diagnosis of dielectric barrier discharge patterns in double-gap configuration. Acta Physica Sinica, 2025, 74(11): 115202. doi: 10.7498/aps.74.20250111
    [2] LI Cheng, YAN Zhihao, QI Xiaoxiu, LI Yuxin, PAN Yuyang, DONG Lifang. D2h superlattice patterns in dielectric barrier discharge with striped water electrode. Acta Physica Sinica, 2025, 74(22): 225202. doi: 10.7498/aps.74.20250985
    [3] MA Yichen, WANG Yufei, WANG Tingting, CAO Yawen, LI Zhengqing, TAN Chang. Discharge characteristics of Martian CO2 in a packed-bed dielectric barrier discharge reactor. Acta Physica Sinica, 2025, 74(23): 235212. doi: 10.7498/aps.74.20251061
    [4] LI Yongjian, LI Guoling, LIU Xiao, ZHENG Jie. Applications of low-temperature non-equilibrium plasmas in preparation and modification of high-efficiency water electrolysis catalysts. Acta Physica Sinica, 2025, 74(23): 235217. doi: 10.7498/aps.74.20251363
    [5] Chen Long, Wang Di-Ya, Chen Jun-Yu, Duan Ping, Yang Ye-Hui, Tan Cong-Qi. Characteristics and suppression methods of low-frequency oscillation in Hall thruster. Acta Physica Sinica, 2023, 72(17): 175201. doi: 10.7498/aps.72.20230680
    [6] Fu Qiang, Wang Cong, Wang Yu-Fei, Chang Zheng-Shi. Comparative study on discharge characteristics of low pressure CO2 driven by sinusoidal AC voltage: DBD and bare electrode structure. Acta Physica Sinica, 2022, 71(11): 115204. doi: 10.7498/aps.71.20220086
    [7] Li Chun-Xi, Cheng Ran, Ye Xue-Min. Effect of contact angle hysteresis and sensitivity of gas-liquid interfacial tension to temperature of a sessile-drop on evaporation dynamics. Acta Physica Sinica, 2021, 70(20): 204701. doi: 10.7498/aps.70.20210294
    [8] Xu Yu, Wang Chao-Liang, Qin Si-Cheng, Zhang Yu, He Tao, Guo Ying, Ding Ke, Zhang Yu-Ru, Yang Wei, Shi Jian-Jun, Du Cheng-Ran, Zhang Jing. Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review. Acta Physica Sinica, 2021, 70(9): 099401. doi: 10.7498/aps.70.20210077
    [9] Ye Xue-Min, Li Yong-Kang, Li Chun-Xi. Influence of equilibrium contact angle on spreading dynamics of a heated droplet on a horizontal plate. Acta Physica Sinica, 2016, 65(10): 104704. doi: 10.7498/aps.65.104704
    [10] Xiao Shu, Wu Zhong-Zhen, Cui Sui-Han, Liu Liang-Liang, Zheng Bo-Cong, Lin Hai, Ricky K Y Fu, Tian Xiu-Bo, Pan Feng, Paul K Chu. Cylindric high power impulse magnetron sputtering source and its discharge characteristics. Acta Physica Sinica, 2016, 65(18): 185202. doi: 10.7498/aps.65.185202
    [11] Liu Wei-Yuan, Yue Han, Wang Shuai, Liu Zhong-Wei, Chen Qiang, Dong Li-Fang, Yang Yu-Jie. Characteristics of dielectric barrier discharge with different dielectric layer structures. Acta Physica Sinica, 2011, 60(2): 025216. doi: 10.7498/aps.60.025216
    [12] E Peng, Duan Ping, Wei Li-Qiu, Bai De-Yu, Jiang Bin-Hao, Xu Dian-Guo. Experimental study of vacuum backpressure on the discharge characteristics of a Hall thruster. Acta Physica Sinica, 2010, 59(12): 8676-8684. doi: 10.7498/aps.59.8676
    [13] E Peng, Duan Ping, Jiang Bin-Hao, Liu Hui, Wei Li-Qiu, Xu Dian-Guo. On the effect of magnetic field gradient on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2010, 59(10): 7182-7190. doi: 10.7498/aps.59.7182
    [14] Zhang Xin-Meng, Tian Xiu-Bo, Gong Chun-Zhi, Yang Shi-Qin. Discharge characteristics of confined cathode micro-arc oxidation. Acta Physica Sinica, 2010, 59(8): 5613-5619. doi: 10.7498/aps.59.5613
    [15] E Peng, Han Ke, Wu Zhi-Wen, Yu Da-Ren. On the role of magnetic field intensity effects on the discharge characteristics of Hall thrusters. Acta Physica Sinica, 2009, 58(4): 2535-2542. doi: 10.7498/aps.58.2535
    [16] Dong Li-Fang, Wang Hong-Fang, Liu Wei-Li, He Ya-Feng, Liu Fu-Cheng, Liu Shu-Hua. Influence of dielectric parameters on temporal behavior of dielectric barrier discharge. Acta Physica Sinica, 2008, 57(3): 1802-1806. doi: 10.7498/aps.57.1802
    [17] Li Xue-Chen, Jia Peng-Ying, Liu Zhi-Hui, Li Li-Chun, Dong Li-Fang. Study on the transition from filamentary to uniform discharge in dielectric barrier discharge. Acta Physica Sinica, 2008, 57(2): 1001-1007. doi: 10.7498/aps.57.1001
    [18] Wang Yan-Hui, Wang De-Zhen. Characteristics of dielectric barrier homogenous discharge at atmospheric pressure in nitrogen. Acta Physica Sinica, 2006, 55(11): 5923-5929. doi: 10.7498/aps.55.5923
    [19] Ouyang Ji-Ting, He Feng, Miao Jin-Song, Feng Shuo. Study of characteristics of coplanar dielectric barrier discharge. Acta Physica Sinica, 2006, 55(11): 5969-5974. doi: 10.7498/aps.55.5969
    [20] Dong Li-Fang, Mao Zhi-Guo, Ran Jun-Xia. Study on the electrical characteristic of different modes of dielectric barrier discharge in argon. Acta Physica Sinica, 2005, 54(7): 3268-3272. doi: 10.7498/aps.54.3268
Metrics
  • Abstract views:  459
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  28 August 2025
  • Accepted Date:  16 September 2025
  • Available Online:  26 September 2025
  • Published Online:  05 December 2025
  • /

    返回文章
    返回