Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review

Xu Yu Wang Chao-Liang Qin Si-Cheng Zhang Yu He Tao Guo Ying Ding Ke Zhang Yu-Ru Yang Wei Shi Jian-Jun Du Cheng-Ran Zhang Jing

Citation:

Treatment uniformity of atmospheric pressure plasma on flexible and porous material surface: A critical review

Xu Yu, Wang Chao-Liang, Qin Si-Cheng, Zhang Yu, He Tao, Guo Ying, Ding Ke, Zhang Yu-Ru, Yang Wei, Shi Jian-Jun, Du Cheng-Ran, Zhang Jing
PDF
HTML
Get Citation
  • Flexible porous materials play an important role in frontier science and technology fields. Surface modification will further endow the materials with diverse and excellent surface properties, and expand the scope of their applications in functional and intelligent wearable devices. Atmospheric pressure plasma technology has many advantages in treating the flexible materials, such as low temperature, low energy consumption, high efficiency, friendly environment, low cost, no change in material itself characteristics, suitability for roll-to-roll preparation, etc. Also, it presents good adaptability in applied environment and target materials. All these advantages meet the requirements of large area and low-cost surface modification of flexible porous materials.In this paper, we review several researches of atmospheric pressure plasma surface modification of flexible porous materials used in advanced materials, new energy, environmental protection and biomedicine. The problems and challenges of stability and permeability encountered in uniformly treating the flexible and porous materials by atmospheric pressure plasma are presented. Then, we introduce our research work on atmospheric pressure plasma stable discharge, roll-to-roll coating treatment of permeability and uniformity. Finally, we introduce the breakthrough in and ideas on the deposition kinetics of nanoparticle thin films and their microstructure control by atmospheric pressure plasma. However, there are still many challenges to be overcome in the applications of the methods in current situation. Basic characteristics, discharge modes of atmospheric pressure plasma and the relationships of plasma discharge to structure and property of the various treated materials need to be further explored. It is confirmed that the permeability and uniformity of the atmospheric pressure plasma treatment in flexible porous materials are very important and their in-depth investigations will promote the application of this method—a high efficient, environmentally-friendly and continuous way of realizing functional and intelligent wearable devices in the future.
      Corresponding author: Zhang Jing, jingzh@dhu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12075054) and the Fundamental Research Funds for Central Universities, China (Grant No. 2232019A3-12)
    [1]

    Herbert T (Shishoo R) 2007 Plasma Technologies for Textiles (Cambridge: Woodhead Publ. Ltd) pp79−128

    [2]

    Jelil R A 2015 J. Mater. Sci. 50 5913Google Scholar

    [3]

    Parida D, Jassal M, Agarwal A K 2012 Plasma Chem. Plasma P. 32 1259Google Scholar

    [4]

    Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner H E 2007 Plasma Process Polym. 4 S1041Google Scholar

    [5]

    Elabid A E A, Zhang J, Shi J, Guo Y, Ding K, Zhang J 2016 Appl. Surf. Sci. 375 26Google Scholar

    [6]

    Armenise V, Fanelli F, Milella A, D'Accolti L, Uricchio A, Fracassi F 2020 Surf. Interfaces 20 100600Google Scholar

    [7]

    Zhu J, Chen J, Luo Y, Sun S, Qin L, Xu H, Zhang P, Zhang W, Tian W, Sun Z 2019 Energy Storage Mater. 23 539Google Scholar

    [8]

    Ivanova T V, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron D C, Černák M 2017 Plasma Process Polym. 14 1600231Google Scholar

    [9]

    Meunier L F, Profili J, Babaei S, Asadollahi S, Sarkissian A, Dorris A, Beck S, Naudé N, Stafford L 2020 Plasma Process Polym. 18 2000158Google Scholar

    [10]

    Chien H H, Liao C Y, Hao Y C, Hsu C C, Cheng I C, Yu I S, Chen J Z 2018 Electrochim. Acta 260 391Google Scholar

    [11]

    NFPA 1999 Standard on Protective Clothing for Emergency Medical Operation (Quincy: National Fire Protection Association)

    [12]

    Talemi P, Delaigue M, Murphy P, Fabretto M 2015 ACS Appl. Mater. Interfaces 7 8465Google Scholar

    [13]

    Wang T, Wang X, Yang B, Chen X, Liu J 2017 J. Electrochem. Soc. 164 D282Google Scholar

    [14]

    Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J 2013 Nanotechnology 24 335202Google Scholar

    [15]

    Fanelli F, Fracassi F 2016 Plasma Process Polym. 13 470Google Scholar

    [16]

    Pothiraja R, Bibinov N, Awakowicz P 2011 J. Phys. D Appl. Phys. 44 355206Google Scholar

    [17]

    Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F O, Tromba G, Favia P 2014 Plasma Process Polym. 11 184Google Scholar

    [18]

    Bashir M, Bashir S, Rees J M, Zimmerman W B 2014 Plasma Process Polym. 11 279Google Scholar

    [19]

    Fisher E R 2013 ACS Appl. Mater. Interfaces 5 9312Google Scholar

    [20]

    Hawker M J, Pegalajar-Jurado A, Fisher E R 2014 Langmuir 30 12328Google Scholar

    [21]

    Hensel K 2009 Eur. Phys. J. D 54 141Google Scholar

    [22]

    Babaeva N Y, Kushner M J 2014 Plasma Sources Sci. T. 23 065047Google Scholar

    [23]

    Hensel K, Katsura S, Mizuno A 2005 IEEE T. Plasma Sci. 33 574Google Scholar

    [24]

    Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar

    [25]

    Lu X, Wu S, Gou J, Pan Y 2014 Sci. Rep. 4 7488Google Scholar

    [26]

    Xu Y, Khrapak S A, Ding K, Schwabe M, Shi J J, Zhang J, Du C R 2019 arXiv: 1903.09379

    [27]

    Jelil R A, Zeng X, Koehl L, Perwuelz A 2012 Text. Res. J. 82 1859Google Scholar

    [28]

    Píchal J, Klenko Y 2009 Eur. Phys. J. D 54 271Google Scholar

    [29]

    Feng C, Hu Y, Jin C, Zhuge L, Wu X, Wang W 2020 Plasma Sci. Technol. 22 015503Google Scholar

    [30]

    Huang B, Takashima K, Zhu X, Pu Y 2014 IEEE T. Plasma Sci. 42 2642Google Scholar

    [31]

    Šimor M, Ráhel’ J, Vojtek P, Černák M, Brablec A 2002 Appl. Phys. Lett. 81 2716Google Scholar

    [32]

    Čech J, Brablec A, Černák M, Puač N, Selaković N, Petrović Z L 2017 Eur. Phys. J. D 71 27Google Scholar

    [33]

    张杰 2016 博士学位论文 (上海: 东华大学)]

    Zhang J 2016 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese)[

    [34]

    张杰, 申亚军, 郭颖, 张菁, 石建军 2017 东华大学学报(自然科学版) 43 293Google Scholar

    Zhang J, Shen Y J, Guo Y, Zhang J, Shi J J 2017 J. Donghua Univ. (Nat. Sci.) 43 293Google Scholar

    [35]

    Zhang J, Guo Y, Shi Y C, Zhang J, Shi J J 2015 Phys. Plasmas 22 083502Google Scholar

    [36]

    Zhang J, Guo Y, Huang X J, Zhang J, Shi J J 2016 Plasma Sci. Technol. 18 974Google Scholar

    [37]

    Shi J J, Zhang J, Qiu G, Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 041502Google Scholar

    [38]

    Liu D W, Shi J J, Kong M G 2007 Appl. Phys. Lett. 90 041502Google Scholar

    [39]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE T. Plasma Sci. 36 2782Google Scholar

    [40]

    Kraus M, Eliasson B, Kogelschatz U, Wokaun A 2001 Phys. Chem. Chem. Phys. 3 294Google Scholar

    [41]

    Zhang Y R, Van Laer K, Neyts E C, Bogaerts A 2016 Appl. Catal. B- Environ. 185 56Google Scholar

    [42]

    Feng F, Zheng Y, Shen X, Zheng Q, Dai S, Zhang X, Huang Y, Liu Z, Yan K 2015 Environ. Sci. Technol. 49 6831Google Scholar

    [43]

    Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. T. 26 054002Google Scholar

    [44]

    Fanelli F, d'Agostino R, Fracassi F 2011 Plasma Process Polym. 8 932Google Scholar

    [45]

    Hensel K, Martišovitš V, Machala Z, Janda M, Leštinský M, Tardiveau P, Mizuno A 2007 Plasma Process Polym. 4 682Google Scholar

    [46]

    Kim H H 2000 Ph. D. Dissertation (Toyohashi: Toyohashi University of Technology)

    [47]

    李杰, 关银霞, 姜楠, 姚晓妹, 王世强, 刘全桢 2017 高压电技术 43 1759Google Scholar

    Li J, Guan Y X, Jiang N, Yao X M, Wang S Q, Liu Q Z 2017 High-Voltage Technol. 43 1759Google Scholar

    [48]

    Armenise V, Milella A, Fracassi F, Bosso P, Fanelli F 2019 Surf. Coat. Technol. 379 125017Google Scholar

    [49]

    Fanelli F, Bosso P, Mastrangelo A M, Fracassi F 2016 Jpn. J. Appl. Phys. 55 07LA01Google Scholar

    [50]

    Qin S C, Wang M, Wang C L, Jin Y C, Yuan N N, Wu Z C, Zhang J 2018 Adv. Mater. Interfaces 5 1800579Google Scholar

    [51]

    Jin Y C, Wang C L, Yuan N N, Ding K, Xu Y, Qin S C, Wang M, Wu Z C, Du C R, Shi J J, Zhang J 2019 Coatings 9 190Google Scholar

  • 图 1  (a) DCSBD电极系统; (b) 在开放环境下的一次“H”型微放电; (c) 在开放环境下300 W表面等离子体; 不同样品上印刷PLLA纳米颗粒的扫描电子显微镜照片, 其中(d)—(g)分别为(d) 未经处理的PET, (e) 未经处理的PP, (f) 经等离子体处理的PET, (g) 经等离子体处理的PP[8]

    Figure 1.  (a) DCSBD electrode system; (b) one H-shaped micro-discharge in ambient air; (c) surface plasma in ambient air at 300 W; scanning electron microscope images of PLLA nanoparticles printed on (d) untreated PET, (e) untreated PP, (f) plasma treated PET, and (g) plasma-treated PP[8].

    图 2  未经处理的MFC泡沫与(a)水或(b)煤油的相互作用; 等离子体处理的MFC泡沫(占气隙体积的一部分)与水和煤油在(c) MFC泡沫顶部和(d)底部的相互作用[9]

    Figure 2.  Interaction of untreated MFC foam with either (a) water or (b) kerosene. Interaction of plasma-treated MFC foam (taking up a portion of the gas gap volume) with water and kerosene on (c) the top side and (d) the bottom side of the MFC foam[9].

    图 3  (a) α模式和(b) γ模式放电光学照片; (c) 不同调制脉冲占空比时大气压射频辉光放电的电流-电压特性[34]

    Figure 3.  Photographs of discharge (a) α mode and (b) γ mode; (c) current-voltage characteristics of pulse-modulated RF APGDs with different duty cycle[34].

    图 4  (a) 常压脉冲放电辅助脉冲调制射频辉光放电电流电压特性; 脉冲放电和射频放电段时间间隔为(b) 40和 (c) 10 μs时, 射频起辉阶段的空间结构分布随延时的变化[35]

    Figure 4.  (a) Current voltage characteristics of RF discharge burst with (dash) and without (solid) pulsed discharge in pulse modulated RF APGD; temporal evolution of discharge spatial profile during RF discharge burst ignition with the time interval between pulsed discharge and RF discharge burst of (b) 40 and (c) 10 μs[35].

    图 5  氦气20 kV连续放电下, 电势在不同微孔直径大小中的分布 (a) 10 μm; (b) 20 μm; (c) 200 μm, 其中图的横纵坐标为微孔的几何尺寸, 右侧颜色条为电势大小, 单位(V)

    Figure 5.  Distributions of the potential for different pore sizes of (a) 10 μm, (b) 20 μm, (c) 200 μm, for a helium discharge sustained at 20 kV.

    图 6  柔性微孔介质等离子体沉积模型示意图

    Figure 6.  Schematic diagram of plasma deposition model for flexible microporous substrate.

    图 7  UHMWPE隔膜截面的扫描电子显微镜(SEM), EDS及元素浓度分布 (a)−(c) SiO2.01C0.23Hx纳米颗粒膜涂层; (d)−(f) Al2O3纳米颗粒膜涂层[51]

    Figure 7.  Cross-section scanning electron microscope (SEM) images and EDS of UHMWPE: (a)−(c) SiO2.01C0.23Hx coating; (d)−(f) Al2O3 coating[50].

    图 8  (a) 不同涂层样品的黏附强度; (b) 180° 剥离试验后的隔膜和胶带的光学照片[51]

    Figure 8.  (a) Adhesion strengths of different coating samples; (b) the optical photo of the separators and tapes after the 180° peel-off test[51].

    图 9  (a) 50% 占空比时鞘层悬浮颗粒随关闭时间的变化; (b) 不同占空比时纳米颗粒薄膜的粒径分布; 不同占空比时沉积纳米颗粒膜的FE-SEM图像, (c)—(d)图对应的占空比分别为(c) 33%, (d) 50%, (e) 67%[26]

    Figure 9.  (a) Motion of sheath trapped particles with 50% duty cycle; (b) particle size distribution of nanoparticle films at different duty cycles; FE-SEM images of deposited nanoparticle films at different duty cycles of (c) 33%, (d) 50%, (e) 67%[26].

  • [1]

    Herbert T (Shishoo R) 2007 Plasma Technologies for Textiles (Cambridge: Woodhead Publ. Ltd) pp79−128

    [2]

    Jelil R A 2015 J. Mater. Sci. 50 5913Google Scholar

    [3]

    Parida D, Jassal M, Agarwal A K 2012 Plasma Chem. Plasma P. 32 1259Google Scholar

    [4]

    Lommatzsch U, Pasedag D, Baalmann A, Ellinghorst G, Wagner H E 2007 Plasma Process Polym. 4 S1041Google Scholar

    [5]

    Elabid A E A, Zhang J, Shi J, Guo Y, Ding K, Zhang J 2016 Appl. Surf. Sci. 375 26Google Scholar

    [6]

    Armenise V, Fanelli F, Milella A, D'Accolti L, Uricchio A, Fracassi F 2020 Surf. Interfaces 20 100600Google Scholar

    [7]

    Zhu J, Chen J, Luo Y, Sun S, Qin L, Xu H, Zhang P, Zhang W, Tian W, Sun Z 2019 Energy Storage Mater. 23 539Google Scholar

    [8]

    Ivanova T V, Krumpolec R, Homola T, Musin E, Baier G, Landfester K, Cameron D C, Černák M 2017 Plasma Process Polym. 14 1600231Google Scholar

    [9]

    Meunier L F, Profili J, Babaei S, Asadollahi S, Sarkissian A, Dorris A, Beck S, Naudé N, Stafford L 2020 Plasma Process Polym. 18 2000158Google Scholar

    [10]

    Chien H H, Liao C Y, Hao Y C, Hsu C C, Cheng I C, Yu I S, Chen J Z 2018 Electrochim. Acta 260 391Google Scholar

    [11]

    NFPA 1999 Standard on Protective Clothing for Emergency Medical Operation (Quincy: National Fire Protection Association)

    [12]

    Talemi P, Delaigue M, Murphy P, Fabretto M 2015 ACS Appl. Mater. Interfaces 7 8465Google Scholar

    [13]

    Wang T, Wang X, Yang B, Chen X, Liu J 2017 J. Electrochem. Soc. 164 D282Google Scholar

    [14]

    Zhu S, Gao Y, Hu B, Li J, Su J, Fan Z, Zhou J 2013 Nanotechnology 24 335202Google Scholar

    [15]

    Fanelli F, Fracassi F 2016 Plasma Process Polym. 13 470Google Scholar

    [16]

    Pothiraja R, Bibinov N, Awakowicz P 2011 J. Phys. D Appl. Phys. 44 355206Google Scholar

    [17]

    Intranuovo F, Gristina R, Brun F, Mohammadi S, Ceccone G, Sardella E, Rossi F O, Tromba G, Favia P 2014 Plasma Process Polym. 11 184Google Scholar

    [18]

    Bashir M, Bashir S, Rees J M, Zimmerman W B 2014 Plasma Process Polym. 11 279Google Scholar

    [19]

    Fisher E R 2013 ACS Appl. Mater. Interfaces 5 9312Google Scholar

    [20]

    Hawker M J, Pegalajar-Jurado A, Fisher E R 2014 Langmuir 30 12328Google Scholar

    [21]

    Hensel K 2009 Eur. Phys. J. D 54 141Google Scholar

    [22]

    Babaeva N Y, Kushner M J 2014 Plasma Sources Sci. T. 23 065047Google Scholar

    [23]

    Hensel K, Katsura S, Mizuno A 2005 IEEE T. Plasma Sci. 33 574Google Scholar

    [24]

    Zhang Y, Wang H Y, Jiang W, Bogaerts A 2015 New J. Phys. 17 083056Google Scholar

    [25]

    Lu X, Wu S, Gou J, Pan Y 2014 Sci. Rep. 4 7488Google Scholar

    [26]

    Xu Y, Khrapak S A, Ding K, Schwabe M, Shi J J, Zhang J, Du C R 2019 arXiv: 1903.09379

    [27]

    Jelil R A, Zeng X, Koehl L, Perwuelz A 2012 Text. Res. J. 82 1859Google Scholar

    [28]

    Píchal J, Klenko Y 2009 Eur. Phys. J. D 54 271Google Scholar

    [29]

    Feng C, Hu Y, Jin C, Zhuge L, Wu X, Wang W 2020 Plasma Sci. Technol. 22 015503Google Scholar

    [30]

    Huang B, Takashima K, Zhu X, Pu Y 2014 IEEE T. Plasma Sci. 42 2642Google Scholar

    [31]

    Šimor M, Ráhel’ J, Vojtek P, Černák M, Brablec A 2002 Appl. Phys. Lett. 81 2716Google Scholar

    [32]

    Čech J, Brablec A, Černák M, Puač N, Selaković N, Petrović Z L 2017 Eur. Phys. J. D 71 27Google Scholar

    [33]

    张杰 2016 博士学位论文 (上海: 东华大学)]

    Zhang J 2016 Ph. D. Dissertation (Shanghai: Donghua University) (in Chinese)[

    [34]

    张杰, 申亚军, 郭颖, 张菁, 石建军 2017 东华大学学报(自然科学版) 43 293Google Scholar

    Zhang J, Shen Y J, Guo Y, Zhang J, Shi J J 2017 J. Donghua Univ. (Nat. Sci.) 43 293Google Scholar

    [35]

    Zhang J, Guo Y, Shi Y C, Zhang J, Shi J J 2015 Phys. Plasmas 22 083502Google Scholar

    [36]

    Zhang J, Guo Y, Huang X J, Zhang J, Shi J J 2016 Plasma Sci. Technol. 18 974Google Scholar

    [37]

    Shi J J, Zhang J, Qiu G, Walsh J L, Kong M G 2008 Appl. Phys. Lett. 93 041502Google Scholar

    [38]

    Liu D W, Shi J J, Kong M G 2007 Appl. Phys. Lett. 90 041502Google Scholar

    [39]

    Balcon N, Hagelaar G J M, Boeuf J P 2008 IEEE T. Plasma Sci. 36 2782Google Scholar

    [40]

    Kraus M, Eliasson B, Kogelschatz U, Wokaun A 2001 Phys. Chem. Chem. Phys. 3 294Google Scholar

    [41]

    Zhang Y R, Van Laer K, Neyts E C, Bogaerts A 2016 Appl. Catal. B- Environ. 185 56Google Scholar

    [42]

    Feng F, Zheng Y, Shen X, Zheng Q, Dai S, Zhang X, Huang Y, Liu Z, Yan K 2015 Environ. Sci. Technol. 49 6831Google Scholar

    [43]

    Zhang Y, Wang H Y, Zhang Y R, Bogaerts A 2017 Plasma Sources Sci. T. 26 054002Google Scholar

    [44]

    Fanelli F, d'Agostino R, Fracassi F 2011 Plasma Process Polym. 8 932Google Scholar

    [45]

    Hensel K, Martišovitš V, Machala Z, Janda M, Leštinský M, Tardiveau P, Mizuno A 2007 Plasma Process Polym. 4 682Google Scholar

    [46]

    Kim H H 2000 Ph. D. Dissertation (Toyohashi: Toyohashi University of Technology)

    [47]

    李杰, 关银霞, 姜楠, 姚晓妹, 王世强, 刘全桢 2017 高压电技术 43 1759Google Scholar

    Li J, Guan Y X, Jiang N, Yao X M, Wang S Q, Liu Q Z 2017 High-Voltage Technol. 43 1759Google Scholar

    [48]

    Armenise V, Milella A, Fracassi F, Bosso P, Fanelli F 2019 Surf. Coat. Technol. 379 125017Google Scholar

    [49]

    Fanelli F, Bosso P, Mastrangelo A M, Fracassi F 2016 Jpn. J. Appl. Phys. 55 07LA01Google Scholar

    [50]

    Qin S C, Wang M, Wang C L, Jin Y C, Yuan N N, Wu Z C, Zhang J 2018 Adv. Mater. Interfaces 5 1800579Google Scholar

    [51]

    Jin Y C, Wang C L, Yuan N N, Ding K, Xu Y, Qin S C, Wang M, Wu Z C, Du C R, Shi J J, Zhang J 2019 Coatings 9 190Google Scholar

  • [1] Zhang Hai-Bao, Chen Qiang. Recent progress of non-thermal plasma material surface treatment and functionalization. Acta Physica Sinica, 2021, 70(9): 095203. doi: 10.7498/aps.70.20202233
    [2] Preface to the special topic: Several problems in plasma physics and material treatment. Acta Physica Sinica, 2021, 70(9): 090101. doi: 10.7498/aps.70.090101
    [3] Zhao Wen-Qi, Zhang Dai, Cui Ming-Hui, Du Ying, Zhang Shu-Yu, Ou Qiong-Rong. Graphene modification based on plasma technologies. Acta Physica Sinica, 2021, 70(9): 095208. doi: 10.7498/aps.70.20202078
    [4] Shao Chun-Rui, Li Hai-Yang, Wang Jun, Xia Guo-Dong. Thermal rectification enhancement based on porous structure in bulk materials. Acta Physica Sinica, 2021, 70(23): 236501. doi: 10.7498/aps.70.20211285
    [5] Feng Bo-Wen, Wang Ruo-Yu, Ma Yu-Peng-Xue, Zhong Xiao-Xia. Evolution of electron density of pin-to-plate discharge plasma under atmospheric pressure. Acta Physica Sinica, 2021, 70(9): 095201. doi: 10.7498/aps.70.20201790
    [6] Wang Jiao, Liu Shao-Hui, Chen Chang-Qing, Hao Hao-Shan, Zhai Ji-Wei. Interface modification and energy storage properties of barium titanate-based/ polyvinylidene fluoride composite. Acta Physica Sinica, 2020, 69(21): 217702. doi: 10.7498/aps.69.20201031
    [7] Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen. Design of 100-MeV proton beam spreading scheme with double-ring double scattering method. Acta Physica Sinica, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [8] Niu Chen, Liu Zhong-Wei, Yang Li-Zhen, Chen Qiang. Effect of standing wave on the uniformity of a low magnetic field helicon plasma. Acta Physica Sinica, 2017, 66(4): 045201. doi: 10.7498/aps.66.045201
    [9] Zhong Zhe-Qiang, Hou Peng-Cheng, Zhang Bin. A novel radial beam smoothing scheme based on optical Kerr effect. Acta Physica Sinica, 2016, 65(9): 094207. doi: 10.7498/aps.65.094207
    [10] Sun Zhen-Yue, Sang Chao-Feng, Hu Wan-Peng, Wang De-Zhen. Simulation of erosion of the tungsten wall by impurities in the divertor plasma. Acta Physica Sinica, 2014, 63(14): 145204. doi: 10.7498/aps.63.145204
    [11] Wang Chen, An Hong-Hai, Jia Guo, Fang Zhi-Heng, Wang Wei, Meng Xiang-Fu, Xie Zhi-Yong, Wang Shi-Ji. Diagnosis of high-Z plasma with soft X-ray laser probe. Acta Physica Sinica, 2014, 63(21): 215203. doi: 10.7498/aps.63.215203
    [12] Li Ze-Long, Zhong Zhe-Qiang, Zhang Bin. Study on multi-beam superposition using complementary polarization control plates. Acta Physica Sinica, 2014, 63(9): 095204. doi: 10.7498/aps.63.095204
    [13] Zhang Li-Wei, Zhao Yu-Huan, Wang Qin, Fang Kai, Li Wei-Bin, Qiao Wen-Tao. Resonance properties of surface plasmon in the anisotropic metamaterial waveguide. Acta Physica Sinica, 2012, 61(6): 068401. doi: 10.7498/aps.61.068401
    [14] Jiang Xiang-Zhan, Liu Yong-Xin, Bi Zhen-Hua, Lu Wen-Qi, Wang You-Nian. Radial density uniformity of dual frequency capacitively coupled plasma. Acta Physica Sinica, 2012, 61(1): 015204. doi: 10.7498/aps.61.015204
    [15] Gao Bi-Rong, Liu Yue. Numerical study on uniformity of electron cyclotron resonance plasma density. Acta Physica Sinica, 2011, 60(4): 045201. doi: 10.7498/aps.60.045201
    [16] Pan Jin-Yan, Gao Yun-Long, Zhang Wen-Yan. High luminance carbon nanotube field emission cold cathode based on indium tin oxide/Ti composite electrode. Acta Physica Sinica, 2010, 59(12): 8762-8769. doi: 10.7498/aps.59.8762
    [17] Jia Ren-Xu, Zhang Yi-Men, Zhang Yu-Ming, Wang Yue-Hu. Nitrogen doped 4H-SiC homoepitaxial layers grown by CVD. Acta Physica Sinica, 2008, 57(10): 6649-6653. doi: 10.7498/aps.57.6649
    [18] Li He, Li Xue-Dong, Li Juan, Wu Chun-Ya, Meng Zhi-Guo, Xiong Shao-Zhen, Zhang Li-Zhu. Investigation on the improvement of the stability and uniformity of solution-based metal-induced crystallization poly-Si using surface-embellishment. Acta Physica Sinica, 2008, 57(4): 2476-2480. doi: 10.7498/aps.57.2476
    [19] Gu Wei-Chao, Lü Guo-Hua, Chen Huan, Chen Guang-Liang, Feng Wen-Ran, Zhang Gu-Ling, Yang Si-Ze. Plasma electrolytic deposition on aluminum tubes. Acta Physica Sinica, 2007, 56(4): 2337-2341. doi: 10.7498/aps.56.2337
    [20] QIU XIAO-MING. RENORMALIZED QUASI LINEAR THEORY OF TURBULENCE IN NON UNIFORM PLASMA (Ⅱ)——RESONANT DIFFUSION IN A TURBULENT PLASMA. Acta Physica Sinica, 1980, 29(9): 1104-1109. doi: 10.7498/aps.29.1104
Metrics
  • Abstract views:  7484
  • PDF Downloads:  209
  • Cited By: 0
Publishing process
  • Received Date:  12 January 2021
  • Accepted Date:  12 March 2021
  • Available Online:  27 April 2021
  • Published Online:  05 May 2021

/

返回文章
返回