Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Construction of ruthenium-based covalent organic framework composites and their surface-enhanced Raman scattering performance

JIANG Long FENG Bo

Citation:

Construction of ruthenium-based covalent organic framework composites and their surface-enhanced Raman scattering performance

JIANG Long, FENG Bo
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Covalent organic frameworks (COFs) have emerged as promising substrates for surface-enhanced Raman scattering (SERS) due to their highly ordered crystalline porous architecture, superior molecular adsorption and enrichment capabilities, and excellent thermal and chemical stability. However, pure COFs inherently lack plasmonic resonance and free electron density, resulting in limited electromagnetic enhancement and overall weak SERS signal, which hinders their practicality in ultrasensitive molecular detection applications. To overcome these limitations, this study aims to design and synthesize a novel ruthenium-based covalent organic framework composite (Ru-COF) by integrating ruthenium complexes directly into the COF skeleton, thereby creating a metal-organic, synergy-enhanced SERS substrate suited for trace analysis in real water.A Ru-COFis synthesized by solvothermal condensation of 1, 2, 4, 5-benzenetetramine (BTA·4HCl) with tris (4, 4’-dicarboxy-2, 2’-bipyridyl) ruthenium, forming Ru-N/O coordinated nodes within the framework. The material is characterizedusing X-ray diffraction (XRD) to confirm enhanced π-π stacking and new crystalline peaks at 10.2° and 16° in Ru-COF, Fourier-transform infrared spectroscopy (FT-IR) to verify amide and benzimidazole bond formations with shifts indicating Ru integration, Brunauer-Emmett-Teller (BET) analysis to reveal the increased specific surface areas (22.5 m2/g for Ru-COF vs. 17.2 m2/g for COF), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) mapping to show uniform distribution of C, N, O, and Ru elements in a dense layered morphology. SERS performance is evaluated using methylene blue (MB) as a probe molecule on a Renishaw InVia Raman spectrometer (514.5 nm excitation, 40 mW power, 10 s exposure), with additional tests on 4-mercaptobenzoic acid (4-MBA) for universality assessment. Enhancement mechanisms are analyzed through energy level alignments, with Ru-COF’s HOMO/LUMO at –0.95 eV/–1.12 eV (vs. vacuum) facilitating hole-injection charge transfer to MB’s levels (–2.34 eV/–4.15 eV), enhancing polarizability derivatives and Raman cross-sections via Herzberg-Teller coupling. The results demonstrate that Ru-COF exhibits superior SERS activity compared with pure COF and Ag-COF. For MB detection, the characteristic peak at 1624 cm–1 shows an analytical enhancement factor (EF) of 1.83 × 1010, calculated from normalized intensities and molecular densities, which far exceeds COF’s performance. Concentration-dependent spectra reveal a linear response from 10–3 to 10–13 M (R2 = 0.997), with a limit of detection (LOD, S/N = 3) of 4.16 × 10–12 M. Signal reproducibility is excellent, with a relative standard deviation (RSD) of 3.41% across 10 random spots. Cycling tests (5 repetitions) retain 90.2% of initial intensity, and long-term stability assessment shows 85.7% signal retention after four-months of air exposure. For 4-MBA, non-resonant enhancement yields an LOD of 10–12 mol/L, dominated by CM via interfacial coordination and π-π interactions. In complex matrices such as tap and river water, Ru-COF maintains LODs of 5.2 × 10–12 mol/L and 6.8 × 10–12 mol/L, respectively, with 91% signal retention after five cycles, demonstrating robust anti-interference against ions (e.g., Cl, SO42–) and organic impurities, attributed to the hydrophobic porous structure and stable Ru coordination. In conclusion, the Ru-COF composite represents a breakthrough in SERS substrate design by achieving ultrasensitive detection through EM-CM synergy, with key physical outcomes including high EF, sub-picomolar LODs, and exceptional spatiotemporal stability. This work provides a novel paradigm for metal-embedded COFs in plasmonic sensing and lays the groundwork for practical applications in environmental monitoring, food safety, and biomedical diagnostics.
  • 图 1  Ru-COF的合成程序示意图

    Figure 1.  Schematic illustration of the synthetic procedure for Ru-COF.

    图 2  (a) COF和Ru-COF复合材料的XRD图谱; (b) COF和Ru-COF复合材料的傅里叶变换红外光谱; (c) COF的N2吸附等温线; (d) Ru-COF的N2吸附等温线

    Figure 2.  (a) XRD patterns of COF and Ru-COF composites; (b) FT-IR spectroscopy of COF and Ru-COF composites; (c) N2 sorption isotherms of COF; (d) N2 sorption isotherms of Ru-COF.

    图 3  (a) COF和(b) Ru-COF的TEM图像; (c) Ru-COF的SEM图像; (d) Ru-COF中C, N, O, Ru的对应元素映射

    Figure 3.  TEM images of (a) COF and (b) Ru-COF; (c) SEM images of Ru-COF; (d) the corresponding elemental mappings of C, N, O, and Ru in Ru-COF.

    图 4  (a) MB在COF, Ag-COF和Ru-COF基底上的SERS光谱; (b) COF, Ag-COF和Ru-COF基底增强因子的对比柱状图

    Figure 4.  (a) SERS spectra of MB at COF, Ag-COF and Ru-COF substrate; (b) comparative bar chart for thesubstrate enhancement factors of COF, Ag-COF and Ru-COF.

    图 5  (a) MB在Ru-COF基底上测试SERS光谱示意图; (b) 不同浓度的MB在Ru-COF基底上的SERS光谱; (c) 拉曼强度与不同MB浓度之间的线性关系; (d) Ru-COF在循环5次时的相应归一化拉曼强度; (e) Ru-COF样品在不同储存时间下的SERS强度; (f) Ru-COF在10个不同位置的MB SERS光谱

    Figure 5.  (a) SERS spectra of MB at COF and Ru-COF substrate; (b) SERS spectra of MB at various concentrations on the Ru-COF substrate; (c) the linear relationship between Raman intensity and different MB concentration; (d) the corresponding normalized Raman strength of the Ru-COF when it is cycled 5 times; (e) SERS intensity of Ru-COF sample at different storage times; (f) MB SERS spectra of Ru-COF at 10 differentlocations.

    图 6  (a) 不同浓度的4-MBA在Ru-COF基底上的SERS光谱; (b) 拉曼强度与不同4-MBA浓度之间的线性关系

    Figure 6.  (a) SERS spectra of MB at various concentrations on the Ru-COF substrate; (b) the linear relationship between Raman intensity and different MB concentration.

    图 7  (a) Ru-COF基底在不同水样(自来水与河水)中检测MB的SERS光谱; (b) 不同浓度MB的自来水在Ru-COF基底上的SERS光谱; (c) 不同浓度MB的河水在Ru-COF基底上的SERS光谱; (d) Ru-COF在循环5次时的相应归一化拉曼强度

    Figure 7.  (a) SERS spectra of MB detected on the Ru-COF substrate in different water samples (tap water and river water); (b) comparison of SERS intensities of MB with various concentrations in tap water on the Ru-COF substrate; (c) comparison of SERS intensities of MB with various concentrations in river water on the Ru-COF substrate; (d) signal retention ratio of Ru-COF substrate after five repeated detections in water samples.

  • [1]

    Itoh T, Procházka M, Dong ZC, Ji W, Yamamoto Y S, Zhang Y, Ozaki Y 2023 Chem. Rev. 123 1552Google Scholar

    [2]

    Cialla-May D, Bonifacio A, Bocklitz T, Markin A, Markina N, Fornasaro S, Dwivedi A, Dib T, Farnesi E, Liu C, Ghosh A, Popp J 2024 Chem. Soc. Rev. 53 8957Google Scholar

    [3]

    Lee S, Dang H J, Moon JI, Kim K, Joung Y, Park S, Yu Q, Chen J D, Lu M D, Chen L X, Joo SW, Choo J 2024 Chem. Soc. Rev. 53 5394Google Scholar

    [4]

    Zhang W D, Peng Y S, Lin C L, Xu M M, Zhao S, Li D, Yang Y C, Yang Y 2024 Chem. Eng. J. 502 157907Google Scholar

    [5]

    Xie Y L, Chen L P, Cui K X, Zeng Y, Luo X J, Deng X J 2024 Talanta 279 126547

    [6]

    Hassanain W A, Johnson C L, Faulds K, Graham D, Keegan N 2022 Analyst 147 4674Google Scholar

    [7]

    Xu H Q, Zhang Y C, Wang Z, Jia Y H, Yang X T, Gao M 2024 J. Colloid Interface Sci. 660 42Google Scholar

    [8]

    Cao Y Q, Zhang J W, Yang Y, Huang Z R, Long N V, Fu C L 2015 Appl. Spectrosc. Rev. 50 499Google Scholar

    [9]

    Cong S, Yuan Y Y, Chen Z G, Hou J Y, Yang M, Su Y L, Zhang Y Y, Li L, Li Q W, Geng F X, Zhao Z G 2015 Nat. Commun. 6 7800Google Scholar

    [10]

    Kaushik A, Kapoor S, Senapati S, Singh J P 2025 Colloids Surf. B. Biointerfaces 252 114676Google Scholar

    [11]

    郑林启, 时术华, 李金泽, 王子宇, 李爽 2023 物理学报 72 227401

    Zheng LQ, Shi SH, Li JZ, Wang ZY, Li S 2023 Acta Phys. Sin. 72 227401

    [12]

    刘丽双, 丑修建, 陈涛, 孙立宁 2016 物理学报 65 197301

    Liu LS, Chou XJ, Chen T, Sun LN 2016 Acta Phys. Sin. 65 197301

    [13]

    Yang T R, Zhang Y C, Jia Y H, Xu H Q, Li J, Liu H L, Gao M 2024 Int. J. Hydrogen Energy 51 703

    [14]

    Cai J Y, Liu R H, Jia S Y, Feng Z H, Lin L, Zheng Z Q, Wu S F, Wang Z Z 2021 Opt. Mater. 122 111779Google Scholar

    [15]

    He H Y, Yang M S, Yu Y Z, Wang A, Mao J J, Shu R, kuang Z B, Su Y R, Li L, Zhu J Q 2025 J. Mater. Sci. 60 6601Google Scholar

    [16]

    Guselnikova O, Lim H, Kim H-J, Kim S H, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y 2022 Small 18 2107182Google Scholar

    [17]

    Yang Y, Li G L, Wang P X, Fan L H, Shi Y H 2022 Talanta 243 123369Google Scholar

    [18]

    Shang Y P, Hu A Q, Ma C Q, Gu J, Wu Y M, Zhu C, Li L, Gao H, Yang T Q, Chen G Q 2025 Food Analy. Methods 18 2165

    [19]

    刘秀英, 李晓凤, 于景新, 李晓东 2016 物理学报 65 157302

    Liu XY, Li XF, Yu JX, Li XD 2016 Acta Phys. Sin. 65 157302

    [20]

    Su R, Li S Q, Su Y G, Wang Z, Gao M 2024 Food Chem. 461 140843Google Scholar

    [21]

    Xu H Q, Li B Z, Meng X D, Chang X, Gao M 2025 ACS Appl. Nano Mater. 8 1173

    [22]

    Li P J, Chen J X, Xie Y L, Wu C J, Zhao Y, Luo X J 2026 Talanta 297 128737Google Scholar

    [23]

    Maiti S, Chowdhury A R, Das A K 2020 ChemNanoMat 6 99Google Scholar

    [24]

    Jia H N, Yao N, Jin Y M, Wu L Q, Zhu J, Luo W 2024 Nat. Commun. 15 5419Google Scholar

    [25]

    Yang Z C, Ma C Q, Gu J, Wu Y M, Zhu C, Li L, Gao H, Yin W Z, Wang Z R, Chen G Q 2023 Food Chem. 401 134078Google Scholar

    [26]

    Yang Y, Jiang H C, Li J L, Zhang J L, Gao SZ, Lu ML, Zhang XY, Liang W B, Zou X Q, Yuan R, Xiao DR 2023 Mater. Horiz. 10 3005

    [27]

    Yang Y, Sandra A P, Idström A, Schäfer C, Andersson M, Evenäs L, Börjesson K 2022 J. Am. Chem. Soc. 144 16093Google Scholar

    [28]

    Yang Z C, Chen G Q, Shen J L, Ma C Q, Gu J, Zhu C, Li L, Gao H 2023 Spectrochim. Acta A 299 122834Google Scholar

    [29]

    Rabbani M G, Sekizkardes A K, El-Kadri O M, Kaafarani B R, El-Kaderi H M 2012 J. Mater. Chem. 22 25409

    [30]

    Zhang Y C, Yang T R, Li J, Zhang Q, Li BZ, Gao M 2023 Adv. Funct. Mater. 33 2210939Google Scholar

    [31]

    Zhang Y C, Xu H Q, Jia Y H, Yang T R, Li J, Gao M, Yang X T 2024 Appl. Surf. Sci. 644 158767Google Scholar

    [32]

    Zhang Y C, Jia Y H, Xu H Q, Song Y H, Gao M, Wang Z, Yang X T 2024 Int. J. Hydrogen Energy 69 1386Google Scholar

    [33]

    Jia Y H, Zhang Y C, Xu H Q, Li J, Gao M, Yang X T 2024 ACS Catal. 14 4601

    [34]

    Jia Y H, Xu H Q, Li B Z, Chang X, Yang X T, Wang Z, Gao M 2025 Food Chem. 488 144835Google Scholar

    [35]

    Zhang Y C, Xu H Q, Jia Y H, Yang X T, Gao M 2024 J. Hazard. Mater. 472 134524Google Scholar

    [36]

    Kumar G, Pillai R S, Khan N H, Neogi S 2021 Appl. Catalysis B: Environ. Energy 292 120149

    [37]

    Jiang L J, Xiong S J, Yang S, Han D L, Liu Y, Yang J H, Gao M 2023 Ceram. Int. 49 19328Google Scholar

    [38]

    Li C, Wu C Q, Zhang K, Chen M Q, Wang Y S, Shi J J, Tang Z Y 2021 New J. Chem. 45 19775Google Scholar

    [39]

    Shaikh I, Haque M A, Pathan H, Sartale S 2022 Plasmonics 17 1889Google Scholar

    [40]

    Zheng Z J, Wang J X, Ma M Q, Xu Y P, Huang D, Wang J, Lin C Y, Lin Z Y, Luo F 2025 Sensor. Actuat. B: Chem. 444 138456Google Scholar

  • [1] JIN Fan, ZHAO Zhichao. The role of donor subunit modification in regulating the electronic and optical properties of covalent organic frameworks. Acta Physica Sinica, doi: 10.7498/aps.75.20251264
    [2] Jia Long, Feng Bo. Construction of Ruthenium-Based Covalent Organic Framework (Ru-COF) Composites and Their Surface-Enhanced Raman Scattering (SERS) Performance. Acta Physica Sinica, doi: 10.7498/aps.75.20251391
    [3] WEN Jinghao, LI Chenhui, TU Guohua, WAN Bingbing, DUAN Maochang, ZHANG Rui. Influence of high-temperature chemical non-equilibrium and surface micropore effect on boundary layer stability. Acta Physica Sinica, doi: 10.7498/aps.74.20250269
    [4] ZHANG Zhaowei, WANG Yanyun, FAN Haiming, JING Guangyin. Stability mechanisms of surface nanobubbles. Acta Physica Sinica, doi: 10.7498/aps.74.20250521
    [5] Wang Jing, Gao Shan, Duan Xiang-Mei, Yin Wan-Jian. Influence of defect in perovskite solar cell materials on device performance and stability. Acta Physica Sinica, doi: 10.7498/aps.73.20231631
    [6] Liu Wen-Ying, Wang Gong-Tang, Duan Peng-Yi, Zhang Wen-Jie, Zhang Can, Hu Xiao-Xuan, Liu Mei. Surface structure effect of F4TCNQ/MoS2 nanocomposite heteromaterials on surface-enhanced Raman scattering. Acta Physica Sinica, doi: 10.7498/aps.72.20221958
    [7] Li Gui-Hua, Zhang Meng-Ya, Ma Hui, Tian Yue, Jiao An-Xin, Zheng Lin-Qi, Wang Chang, Chen Ming, Liu Xiang-Dong, Li Shuang, Cui Qing-Qiang, Li Guan-Hua. Low temperature-promoted surface plasmon resonance effect and ultrasensitive surface-enhanced Raman scattering detection of creatinine. Acta Physica Sinica, doi: 10.7498/aps.71.20220151
    [8] Zhao Xing, Hao Qi, Ni Zhen-Hua, Qiu Teng. Single-molecule surface-enhanced Raman spectroscopy (SM-SERS): characteristics and analysis. Acta Physica Sinica, doi: 10.7498/aps.70.20201447
    [9] Yan Jia-Hao, Chen Si-Xuan, Yang Jian-Bin, Dong Jing-Jing. Improving efficiency and stability of organic-inorganic hybrid perovskite solar cells by absorption layer ion doping. Acta Physica Sinica, doi: 10.7498/aps.70.20210836
    [10] Wu Mei-Mei, Zhang Chao, Zhang Can, Sun Qian-Qian, Liu Mei. Surface enhanced Raman scattering characteristics of three-dimensional pyramid stereo composite substrate. Acta Physica Sinica, doi: 10.7498/aps.69.20191636
    [11] Qin Kang, Yuan Lie-Rong, Tan Jun, Peng Sheng, Wang Qian-Jin, Zhang Xue-Jin, Lu Yan-Qing, Zhu Yong-Yuan. Surface-enhanced Raman scattering of subwavelength metallic structures. Acta Physica Sinica, doi: 10.7498/aps.68.20190458
    [12] Wang Xiang-Xian, Bai Xue-Lin, Pang Zhi-Yuan, Yang Hua, Qi Yun-Ping, Wen Xiao-Lei. Surface-enhanced Raman scattering effect of composite structure with gold nano-cubes and gold film separated by polymethylmethacrylate film. Acta Physica Sinica, doi: 10.7498/aps.68.20190054
    [13] Li Jin-Hua, Zhang Si-Nan, Zhai Ying-Jiao, Ma Jian-Gang, Fang Wen-Hui, Zhang Yu. Development and application of MoS2 and its metal composite surface enhanced Raman scattering substrates. Acta Physica Sinica, doi: 10.7498/aps.68.20182113
    [14] Gao Xing-Hui, Tang Dong, Zhang Cheng-Yun, Zheng Hui, Lu Da-Quan, Hu Wei. Nonlocal surface dark solitons and their stability analysis. Acta Physica Sinica, doi: 10.7498/aps.63.024204
    [15] Tang Jian, Liu Ai-Ping, Li Pei-Gang, Shen Jing-Qin, Tang Wei-Hua. Surface-enhanced Raman scattering of gold/graphene oxide composite materials fabricated by interface self-assembling. Acta Physica Sinica, doi: 10.7498/aps.63.107801
    [16] Huang Qian, Xiong Shao-Zhen, Zhao Ying, Zhang Xiao-Dan. Nonlinear phenomenon of surface enhanced Raman scattering caused by surface plasmon. Acta Physica Sinica, doi: 10.7498/aps.61.157801
    [17] Zhang Xin-Wen, Hu Qi. Stability of organic light-emitting device. Acta Physica Sinica, doi: 10.7498/aps.61.207802
    [18] Huang Qian, Wang Jing, Cao Li-Ran, Sun Jian, Zhang Xiao-Dan, Geng Wei-Dong, Xiong Shao-Zhen, Zhao Ying. Research of surface enhanced Raman scattering caused by surface plasmon of Ag nano-structures. Acta Physica Sinica, doi: 10.7498/aps.58.1980
    [19] Wang Yan, Han Xiao-Yan, Ren Hui-Zhi, Hou Guo-Fu, Guo Qun-Chao, Zhu Feng, Zhang De-Kun, Sun Jian, Xue Jun-Ming, Zhao Ying, Geng Xin-Hua. Stability of mixed phase silicon thin film material under light soaking. Acta Physica Sinica, doi: 10.7498/aps.55.947
    [20] Liu Hong-Jun, Chen Guo-Fu, Zhao Wei, Wang Yi-Shan. The generation of high efficiency and high quality andhigh stability parametric amplified light. Acta Physica Sinica, doi: 10.7498/aps.53.105
Metrics
  • Abstract views:  26
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  08 December 2025
  • /

    返回文章
    返回