-
The virtual cathode is an important phenomenon in the process of thermionic emission, and it is widely present in a variety of electronic devices and systems such as vacuum tubes, electron guns, high-power microscopes, x-ray tubes, concentrated solar thermionic converters, and emissive probes. Given that the virtual cathode can directly affect the performance level of these devices, it is of great significance to study the characteristics of the virtual cathode and conduct experimental measurements on it. In our recent research, a one-dimensional model of thermionic emission was established, and the analytical expressions for the potential barrier and the spatial width of the virtual cathode were derived. With the development of virtual cathode theories, measuring the virtual cathode experimentally has become a reality. In this study, based on the one-dimensional theoretical model developed by us, the absolute error theory of the virtual cathode is established, and the contributions of different parameters such as the hot-cathode temperature, the saturated electron emission current, the electron collection current, Dushman constant, and the work function of hot cathodes to the absolute errors in the virtual cathode measurement are systematically analyzed. The research results show that the main factors affecting the measurement of the virtual cathode potential are closely related to the size of the virtual cathode. When the virtual cathode generated by hot-cathodes is strong, the uncertainty of the hot-cathode temperature is the main error source with a probability of about 61% for the potential barrier measurement, while when the virtual cathode is weak, the main factor now becomes the uncertainty of the electron current measurement with a probability of about 39%. Besides, in the measurement of the virtual cathode width, for common hot-cathodes such as oxide (BaO) cathode, tungsten cathode and molybdenum cathode, the main factors affecting the measurement results are respectively approximately 94%, 96% and 97% to be the uncertainties of the hotcathode temperature and the work function. Only when the virtual cathode is very weak, the uncertainty of the electron current is the main error source for the measurement of the virtual cathode width.
-
Keywords:
- virtual cathode /
- absolute error /
- hot-cathode temperature /
- thermionic emission
-
[1] Kurkin S A, Koronovski A A, Hramov A E 2009 Plasma Phys. Rep. 35 628
[2] Kurkin S A, Hramov A E 2009 Tech. Phys. Lett. 35 23
[3] Kurilenkov Y K, Tarakanov V P, Gus'kov S Y, Oginov A V, Karpukhin V T 2018 Contrib. Plasma Phys. 58 952
[4] Nebel R A, Stange S, Park J, Taccetti J M, Murali S K, Garcia C E 2005 Phys. Plasmas 12 012701
[5] Mahto M, Jain P K 2018 IEEE Trans. Plasma Sci. 46 518
[6] Kostov K G, Nikolov N A, Spassovsky I P, Spassov V A 1992 Appl. Phys. Lett. 60 2598
[7] Kostov K G, Nikolov N A 1994 Phys. Plasmas 1 1034
[8] Valletti L, Fantauzzi S, Paolo F D 2023 IEEE Trans. Electron Devices 70 3864
[9] Li L M, Cheng G X, Zhang L, Ji X, Chang L, Xu Q F, Liu L, Wen J C, Li C L, Wan H 2011 J. Appl. Phys. 109 074504
[10] Su D, Deng L K, Wang B 2014 Acta Phys. Sin. 63 235204 (in Chinese) [苏东, 邓立科, 王斌 2014 物理学报 63 235204]
[11] Wang D Y, Ma J X, Li Y R, Zhang W G 2009 Acta Phys. Sin. 58 8432 (in Chinese) [王道泳, 马锦绣, 李毅人, 张文贵 2009 物理学报 58 8432]
[12] Smith J R, Hershkowitz N, Coakley P 1979 Rev. Sci. Instrum. 50 210
[13] Marek A, Jílek M, Picková I, Kudrna P, Tichý M, Schrittwieser R, Ionita C 2008 Contrib. Plasma Phys. 48 491
[14] Ye M Y, Takamura S 2000 Phys. Plasmas 7 3457
[15] Seif M N, Zhou Q F, Liu X T, Balk T J, Beck M J 2022 IEEE Trans. Electron Devices 69 3523
[16] Child C D 1911 Phys. Rev. 32 492
[17] Langmuir I 1913 Phys. Rev. 2 450
[18] Langmuir I 1923 Phys. Rev. 21 419
[19] Langmuir I, Compton K T 1931 Rev. Mod. Phys. 3 191
[20] Li J Q, Li S H, Ma H J 2024 Phys. Scr. 99 055974
[21] Li J Q, Li S H 2024 J. Appl. Phys. 136 105105
[22] Li J Q, Xie X Y, Li S H, Zhang Q H 2022 Vacuum 200 111013
[23] Li S H, Li J Q 2021 Vacuum 192 110496
[24] Kalinin Y A, Hramov A E 2006 Tech. Phys. 51 558
[25] Li J Q 2024 Emissive Probes: Principles, Devices and Applications (Tianjin: Tianjin University Press) pp 157-176 (in Chinese) [李建泉 2024 发射探针:原理、装置及应用(天津:天津大学出版社) pp 157-176]
[26] Zhang J F 1963 IEEE Trans. Reliab. 12 169
[27] Purwar H, Goutierre E, Guler H, Rossetti Conti M, Chance S, Gonnin A, Monard H, Bacci A, Sebag M, Cohen J, Bruni C 2023 J. Phys. Commun. 7 025002
[28] Bekker T B, Rashchenko S V, Seryotkin Y V, Kokh A E, Davydov A V, Fedorov P P 2017 J. Am. Ceram. Soc. 101 450
Metrics
- Abstract views: 94
- PDF Downloads: 4
- Cited By: 0