Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Coherent manipulation of multiple ions in a room-temperature surface-electrode trap

XIE Yi CHEN Ting WANG Hongyang TAO Yi ZHANG Xin CHEN Yan ZHANG Jie WU Wei CHEN Pingxing

Citation:

Coherent manipulation of multiple ions in a room-temperature surface-electrode trap

XIE Yi, CHEN Ting, WANG Hongyang, TAO Yi, ZHANG Xin, CHEN Yan, ZHANG Jie, WU Wei, CHEN Pingxing
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The development of high-performance chip-scale ion traps is pivotal for the integration and scaling of ion-trap-based quantum computers. While cryogenic environments can significantly suppress anomalous heating, operating ion traps at room temperature remains highly attractive for its simplicity and lower cost. This work reports significant progress in coherently controlling multiple ions confined in a custom-fabricated, room-temperature surface-electrode trap, establishing a critical foundation for advanced quantum protocols like quantum error correction and future scalable architectures.
    Research Objectives and Methods: Our study aimed to characterize a home-built chip trap and demonstrate its capabilities for multi-ion quantum logic under ambient conditions. The trap features a six-wire electrode design on a high-resistivity silicon substrate, with ions trapped at a height of 154 µm. We employed a combination of Doppler cooling, Electromagnetically Induced Transparency (EIT) cooling, and resolved-sideband cooling to prepare the ions in the motional ground state. Coherent manipulations were performed using both a 729 nm laser (for qubits between the $|\text{S}_{1/2},m_j=-1/2\rangle$ and $|\text{S}_{1/2},m_j=+1/2\rangle$ states) Quantum state detection was achieved via state-dependent fluorescence using an EMCCD camera, enabling site-resolved readout.
    Key Results:
    Low Room-temperature Heating Rates: The trap exhibited low heating rates, measured to be 0.074(8) quanta/ms in the axial direction (at 833 kHz) and 0.237(51) quanta/ms in the radial direction (at 1.3 MHz). The spectral density of electric-field noise is on the order of 10-13 V2/m2Hz at trap frequencies above 500 kHz, ranking among the best for room-temperature devices. The spectral density of electric-field noise followed an approximate f-2.52(22) dependence, potentially influenced by external filtering circuits.
    High-Fidelity Single-Ion Control: A single 40Ca+ ion was cooled to an average phonon number of 0.04(2) in its axial motion. High-fidelity coherent operations were demonstrated: carrier Rabi oscillations using the 729 nm laser showed a single-pulse fidelity of approximately 98.98(8)%, while microwave-driven operations achieved a fidelity of 99.95(2)%. Ramsey interferometry with microwaves revealed a coherence time T*2 of 5.0(4) ms.
    Site-Resolved Multi-Ion Coherent Control: The core achievement was the global coherent manipulation of ion chains containing up to 20 ions. We characterized the system by driving motional sideband transitions on various axial modes of 5- and 6-ion chains. The resulting Rabi oscillations, measured with site-resolved fluorescence, clearly showed the collective dynamics and mode-dependent coupling strengths dictated by the normalized mode eigenvectors. Furthermore, global carrier transitions were demonstrated on a 2D zigzag crystal of 20 ions, confirming the ability to execute simultaneous operations on a large qubit array.
    Global Control of 2D Ion Crystals: With 20 ions, a 2D zigzag crystal was formed and globally addressed using both laser and microwave drives. Laser-driven carrier transitions showed strong decay due to multimode motional coupling, while microwave-driven oscillations remained nearly decay-free, consistent with the Lamb–Dicke parameter being negligible for microwave fields.
    Conclusion: We have successfully demonstrated that our room-temperature surface-electrode trap can support low-heating confinement, high-fidelity single- and multi-qubit operations, and coherent control of large ion arrays. The site-resolved observations of mode-dependent coupling highlight the potential for exploiting collective vibrational modes for selective quantum control. These results validate the trap as a robust and promising platform for medium-scale quantum information processing and quantum simulation at room temperature. Future work will focus on structural optimizations to reduce radial heating and integration with cryogenic systems to further suppress noise, ultimately advancing toward large-scale quantum computing architectures.
  • [1]

    Cai M L, Liu Z D, Jiang Y, Wu Y K, Mei Q X, Zhao W D, He L, Zhang X, Zhou Z C, Duan L M 2022 Chin. Phys. Lett. 39 020502

    [2]

    Cui T H, Li J, Yuan Q, Wei Y Q, Dai S Q, Li P D, Zhou F, Zhang J Q, Chen L, Feng M 2023 Chin. Phys. Lett. 40 080501

    [3]

    Zhao X, Bian J, Li Y, Li Y, Zhang M, Lin Y 2025 Chin. Phys. Lett. 42 110601

    [4]

    Wu Y K, Duan L M 2023 Acta Phys. Sin. 72 230302 (in Chineses) [吴宇恺, 段路明. 2023 物理学报 72 230302]

    [5]

    Guo S A, Wu Y K, Ye J, Zhang L, Lian W Q, Yao R, Wang Y, Yan R Y, Yi Y J, Xu Y L, Li B W, Hou Y H, Xu Y Z, Guo W X, Zhang C, Qi B X, Zhou Z C, He L, Duan L M 2024 Nature 630 613

    [6]

    Zhang J, Chow B T, Ejtemaee S, Haljan P C 2023 npj Quantum Inf. 9 68

    [7]

    Cheng Z J, Wu Y K, Li S J, Mei Q X, Li B W, Wang G X, Jiang Y, Qi B X, Zhou Z C, Hou P Y, Duan L M 2024 Sci. Adv. 10 eadr9527

    [8]

    Cai M L, Liu Z D, Zhao W D, Wu Y K, Mei Q X, Jiang Y, He L, Zhang X, Zhou Z C, Duan L M 2021 Nature Commun. 12 1126

    [9]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601

    [10]

    Iqbal M, Tantivasadakarn N, Gatterman T M, Gerber J A, Gilmore K, Gresh D, Hankin A, Hewitt N, Horst C V, Matheny M, Mengle T, Neyenhuis B, Vishwanath A, Foss-Feig M, Verresen R, Dreyer H 2024 Commun. Phys. 7 205

    [11]

    Chertkov E, Cheng Z, Potter A C, Gopalakrishnan S, Gatterman T M, Gerber J A, Gilmore K, Gresh D, Hall A, Hankin A, Matheny M, Mengle T, Hayes D, Neyenhuis B, Stutz R, Foss-Feig M 2023 Nature Phys. 19 1799

    [12]

    Pearson C E, Leibrandt D R, Bakr W S, Mallard W J, Brown K R, Chuang I L 2006 Phys. Rev. A 73 032307

    [13]

    Seidelin S, Chiaverini J, Reichle R, Bollinger J J, Leibfried D, Britton J, Wesenberg J H, Blakestad R B, Epstein R J, Hume D B, Itano W M, Jost J D, Langer C, Ozeri R, Shiga N, Wineland D J 2006 Phys. Rev. Lett. 96 253003

    [14]

    Qin Q, Chen T, Zhang X, Ou B, Zhang J, Wu C, Xie Y, Wu W, Chen P 2025 Chip 4 100126

    [15]

    Wang C X, He R, Li R R, Chen Y, Fang D, Cui J M, Huang Y F, Li C F, Guo G C 2022 Acta Phys. Sin. 71 133701 (in Chineses) [王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 2022 物理学报 71 133701]

    [16]

    Chen T, Xie Y, Zhang J, Ou B, Qin Q, Zhang X, Wang H, Tao Y, Xiong K, Fan G, Ouyang Y, Chen Y, Wu W, Chen P 2025 Acta Optica Sin. 45 2027004 (in Chineses) [陈婷, 谢艺, 张杰, 欧保全, 秦青青, 张鑫方, 王弘扬, 陶毅, 熊凯莉, 樊钢, 欧阳仪, 陈岩, 吴伟, 陈平形. 2025 光学学报 45 2027004]

    [17]

    Kwon J, Setzer W J, Gehl M, Karl N, Van Der Wall J, Law R, Blain M G, Stick D, McGuinness H J 2024 Nature Commun. 15 3709

    [18]

    Weber M A, Gely M F, Hanley R K, Harty T P, Leu A D, Loschnauer C M, Nadlinger D P, Lucas D M 2024 Phys. Rev. A 110 L010601

    [19]

    Todaro S L, Verma V B, McCormick K C, Allcock D T C, Mirin R P, Wineland D J, Nam S W, Wilson A C, Leibfried D, Slichter D H 2021 Phys. Rev. Lett. 126 010501

    [20]

    Moses S A, Baldwin C H, Allman M S, Ancona R, Ascarrunz L, Barnes C, Bartolotta J, Bjork B, Blanchard P, Bohn M, Bohnet J G, Brown N C, Burdick N Q, Burton W C, Campbell S L, Campora J P, Carron C, Chambers J, Chan J W, Chen Y H, Chernoguzov A, Chertkov E, Colina J, Curtis J P, Daniel R, DeCross M, Deen D, Delaney C, Dreiling J M, Ertsgaard C T, Esposito J, Estey B, Fabrikant M, Figgatt C, Foltz C, Foss-Feig M, Francois D, Gaebler J P, Gatterman T M, Gilbreth C N, Giles J, Glynn E, Hall A, Hankin A M, Hansen A, Hayes D, Higashi B, Hoffman I M, Horning B, Hout J J, Jacobs R, Johansen J, Jones L, Karcz J, Klein T, Lauria P, Lee P, Liefer D, Lu S T, Lucchetti D, Lytle C, Malm A, Matheny M, Mathewson B, Mayer K, Miller D B, Mills M, Neyenhuis B, Nugent L, Olson S, Parks J, Price G N, Price Z, Pugh M, Ransford A, Reed A P, Roman C, Rowe M, Ryan-Anderson C, Sanders S, Sedlacek J, Shevchuk P, Siegfried P, Skripka T, Spaun B, Sprenkle R T, Stutz R P, Swallows M, Tobey R I, Tran A, Tran T, Vogt E, Volin C, Walker J, Zolot A M, Pino J M 2023 Phys. Rev. X 13 041052

    [21]

    Ruster T, Warschburger C, Kaufmann H, Schmiegelow C T, Walther A, Hettrich M, Pfister A, Kaushal V, Schmidt-Kaler F, Poschinger U G 2014 Phys. Rev. A 90 033410

    [22]

    Hilder J, Pijn D, Onishchenko O, Stahl A, Orth M, Lekitsch B, Rodriguez-Blanco A, Muller M, Schmidt-Kaler F, Poschinger U G 2022 Phys. Rev. X 12 011032

    [23]

    Palmero M, Martinez-Garaot S, Poschinger U G, Ruschhaupt A, Muga J G 2015 New J. Phys. 17 093031

    [24]

    James D F V 1998 Appl. Phys. B 66 181

    [25]

    Tao Y, Chen T, Wang H, Zhang J, Zhang T, Xie Y, Chen P, Wu W 2024 Phys. Rev. A 109 062434

    [26]

    Zhang J, Chen S M, Liu W 2014 Acta Phys. Sin. 63 060303 (in Chineses) [张见, 陈书明, 刘威. 2014 物理学报 63 060303]

    [27]

    Laupretre T, Achi B, Groult L, Carry E, Kersale Y, Delehaye M, Hafiz M A, Lacroute C 2023 Appl. Phys. B 129 37

    [28]

    Zhang J, Zhang M C, Xie Y, Wu C W, Ou B Q, Chen T, Bao W S, Haljan P, Wu W, Zhang S, Chen P X 2022 Phys. Rev. Appl. 18 014022

    [29]

    Turchette Q A, Kielpinski, King B E, Leibfried D, Meekhof D M, Myatt C J, Rowe M A, Sackett C A, Wood C S, Itano W M, Monroe C, Wineland D J 2000 Phys. Rev. A 61 063418

    [30]

    Chiaverini J, Sage J M 2014 Phys. Rev. A 89 012318

    [31]

    Chen W, Gan J, Zhang J N, Matuskevich D, Kim K 2021 Chin. Phys. B 30 060311

  • [1] Fu Yu-Liang, Zhang Si-Yuan, Yang Jin-Yuan, Sun An-Bang, Wang Ya-Nan. Electron heating mode in magnetic field diffusion region of microwave discharge ion thruster. Acta Physica Sinica, doi: 10.7498/aps.73.20240017
    [2] Wang Yan, Peng Miao, Cheng Wei, Peng Zheng, Cheng Hao, Zang Sheng-Yin, Liu Hao, Ren Xiao-Dong, Shuai Yu-Bei, Huang Cheng-Zhi, Wu Jia-Gui, Yang Jun-Bo. Controllable multi-trap optical tweezers based on low loss optical phase change and metalens. Acta Physica Sinica, doi: 10.7498/aps.72.20221794
    [3] Liu Teng, Lu Peng-Fei, Hu Bi-Ying, Wu Hao, Lao Qi-Feng, Bian Ji, Liu Yang, Zhu Feng, Luo Le. Phonon-mediated many-body quantum entanglement and logic gates in ion traps. Acta Physica Sinica, doi: 10.7498/aps.71.20220360
    [4] Li Xiang-Yan, Wang Zhi-Hui, Li Shao-Kang, Tian Ya-Li, Li Gang, Zhang Peng-Fei, Zhang Tian-Cai. Measurement of magnetically insensitive state coherent time in blue dipole trap. Acta Physica Sinica, doi: 10.7498/aps.69.20192001
    [5] Peng Jie-Yang, Wang Jia-Hai, Shen Bin, Li Hao-Liang, Sun Hao-Ming. Influences of nanoscale particles and interparticle compression in electrodes on voltage hysteresis of lithium ion batteries. Acta Physica Sinica, doi: 10.7498/aps.68.20182302
    [6] Wei Zheng-Hong, Yun Feng, Ding Wen, Huang Ya-Ping, Wang Hong, Li Qiang, Zhang Ye, Guo Mao-Feng, Liu Shuo, Wu Hong-Bin. Reflective Ni/Ag/Ti/Au electrode with low specific contact resistivity. Acta Physica Sinica, doi: 10.7498/aps.64.127304
    [7] Liu Yu-Zhu, Gerber Thomas, Knopp Gregor. Optical control of the vibrational excitation of the polyatomic ions via strong field multi-photon ionization. Acta Physica Sinica, doi: 10.7498/aps.63.244208
    [8] Zhang Jian, Chen Shu-Ming, Liu Wei. Substrate effect on surface-electrode ion trap and hybrid design for ion trap. Acta Physica Sinica, doi: 10.7498/aps.63.060303
    [9] Wang Wei, Yang Lan-Jun, Gao Jie, Liu Shuai. Experimental study on the thrust and the ratio of thrust to power of multi-points/grid ionic wind exciter. Acta Physica Sinica, doi: 10.7498/aps.62.075205
    [10] Ma Zhi-Bin, Shen Wu-Lin, Wu Jun, Yan Lei, Wang Jian-Hua. Effect of cylinder-electrode on magnetoelectric heating of ions. Acta Physica Sinica, doi: 10.7498/aps.62.015202
    [11] Cheng Mu-Tian. Coherent controlling surface plasmon transport properties in Ag nanowire by classic optical field. Acta Physica Sinica, doi: 10.7498/aps.60.117301
    [12] Shen Wu-Lin, Ma Zhi-Bin, Tan Bi-Song, Wu Jun, Wang Jian-Hua. Magnetoelectric heating in the ECR plasma. Acta Physica Sinica, doi: 10.7498/aps.60.105204
    [13] Zhang Ji-Yan, Yang Jia-Min, Xu Yan, Yang Guo-Hong, Yan Jun, Meng Guang-Wei, Ding Yao-Nan, Wang Yan. Absorption experiments on radiatively heated Al plasma. Acta Physica Sinica, doi: 10.7498/aps.57.985
    [14] Sheng Zheng-Mao, Wang Yong, Ma Jian, Zheng Si-Bo. Simulation on heating of plasma in a magnetic field with electrostatic wave. Acta Physica Sinica, doi: 10.7498/aps.55.1301
    [15] Nie Zong-Xiu, Li Jiao-Mei, Jiang Yu-Rong, Zhu Yan-Wu, Guan Hua, Shu Hua-Lin, Shao Hui-Li, Gao Ke-Lin. Character of store and reaction of ground state multiply charged Fen+(n=1—3) ions in a Paul trap. Acta Physica Sinica, doi: 10.7498/aps.53.1034
    [16] ZHU XUE-GUANG, KUANG GUANG-LI, ZHAO YAN-PING, LI YOU-YI, XIE JI-KANG. FAST WAVE MINORITY ION HEATING. Acta Physica Sinica, doi: 10.7498/aps.48.1709
    [17] SHEN LIN-FANG, YU GUO-YANG. THE EFFECT OF ION CYCLOTRON RESONANCE HEATING ON LOWER HYBRID CURRENT DRIVE IN TOKAMAK PLASMA. Acta Physica Sinica, doi: 10.7498/aps.41.587
    [18] CHEN YAN-PING, ZHANG CHUN-YUAN. THE EFFECT OF PARTICLE ORBIT LOSS ON ION STOCHASTIC HEATING WITH LH WAVES. Acta Physica Sinica, doi: 10.7498/aps.33.457
    [19] XU ZHI-ZHAN, LI AN-MING, CHEN SHI-SHEN, LIN LI-HUANG, LIANG XIANG-CHUN, OUYANG BIN, BI WU-JI, HOU SHING-FA, YIN GUANG-YU, ZHANG SHU-GAN, PAN CHENG-MING. INVESTIGATION OF LASER HEATING OF PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.30.1077
    [20] TAN WEI-HAN, XU ZHI-ZHAN. SINGLE AND DOUBLE FREQUENCY RESONANCE HEATING IN LASER-IRRADIATED PLASMAS. Acta Physica Sinica, doi: 10.7498/aps.26.133
Metrics
  • Abstract views:  13
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  25 November 2025
  • /

    返回文章
    返回