-
Optical Stokes vector skyrmions, as novel fully Poincaré spherical vector beams, hold broad application prospects in optical communication, optical computing, multiplexing, and super-resolution imaging. However, existing research primarily focuses on the controllable generation of single optical skyrmions, with limited exploration of continuous modulation of different skyrmion configurations and insufficient investigation into generation in the terahertz frequency band. This paper proposes a multilayer metasurface that generates higher-order topological configurations of Stokes vector skyrmions through rotation. For instance, a two-layer structure enables rotational control of two skyrmion types, while a three-layer design achieves control over four skyrmion types. A twist-tunable double-layer Moiré metasurface design is simultaneously developed, where the two metasurface layers are designed with complementary Moiré phases to achieve continuous modulation of the radial skyrmion order. By synergistically modulating the geometric and dynamic phases of the metasurface, the topological invariance of free-space propagating skyrmions is preserved while maintaining beam intensity. The paper presents detailed theoretical analysis and numerical results, validated through full-wave simulation studies. This multilayer metasurface design enables dynamic control of Stokes vector and skyrmion configurations solely by adjusting the relative rotation angles between layers, eliminating the need to alter incident light or external conditions. This approach breaks through the limitations of traditional phase modulation methods reliant on phase-change materials. Furthermore, the dual-layer Moiré metasurface design significantly enhances device integration, offering a highly integrated and flexible technical pathway for realizing multidimensional light field manipulation and long-distance terahertz optical communication systems.
-
Keywords:
- THz metasurfaces /
- Skyrmions /
- Phase modulation /
- Moiré metasurface
-
[1] Zambrini R, Barnett S M 2007 Opt. Express 15 15214
[2] Forbes A, de Oliveira M, Dennis M R 2021 Nat. Photonics 15 253
[3] Rubinsztein-Dunlop H, Forbes A, Berry M V, Dennis M R, Andrews D L, Mansuripur M, Denz C, Alpmann C, Banzer P, Bauer T, Karimi E, Marrucci L, Padgett M, Ritsch-Marte M, Litchinitser N M, Bigelow N P, Rosales-Guzmán C, Belmonte A, Torres J P, Neely T W, Baker M, Gordon R, Stilgoe A B, Romero J, White A G, Fickler R, Willner A E, Xie G, McMorran B, Weiner A M 2017 J.Opt 19 013001
[4] Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino F 2011 J.Opt 13 064001
[5] Rosales-Guzmán C, Rodríguez-Fajardo V 2024 Appl. Phys. Lett. 125
[6] Li Y X, Zhang H Y, Cheng J X, Wang J C, Zhang M, Jiang Q Y, Liu M, Zhang Y P 2026 Acta. Phys. Sin 75 (in Chinese)[李禹希, 张会云, 陈炯煦,王嘉诚,张敏,蒋庆友,刘蒙,张玉萍 2026 物理学报 75]
[7] Jia Y C, Zhang F R, Zhang J F, Kong L J, Zhang X D 2024 Acta. Phys. Sin 73 (in Chinese) [贾谊成, 张福荣, 张景风,孔令军,张向东2024 物理学报 73]
[8] Shen Y J, Zhang Q, Shi P, Du L P, Yuan X C, Zayats A V 2023 Nat. Photonics 18 15
[9] Zhou Z K, Wang S C, Li X P 2024 Acta. Opt. Sin 44 (in Chinese) [周志凯, 王思聪, 李向平2024 光学学报 44]
[10] Tokura Y, Kanazawa N 2021 Chem. Rev. 121 2857
[11] Wang C H, Wang J M, Huang C, Zhang D, Liu S, Liu Y W 2025 Opt. Express 33 3068
[12] Tsesses S, Ostrovsky E, Cohen K, Gjonaj B, Lindner N H, Bartal G 2018 Science 361 993
[13] Bai C Y, Chen J, Zhang Y X, Zhang D W, Zhan Q W 2020 Opt. Express 28 10320
[14] Shen Z, Lu S, Xiong X 2024 Opt. Express 32 48289
[15] Davis T J, Janoschka D, Dreher P, Frank B, Meyer Zu Heringdorf F J, Giessen H 2020 Science 368 eaba6415
[16] Lei X R, Zhan Q W 2023 ACS Photonics 10 3551
[17] Teng H A, Zhong J Z, Lei X R, Zhan Q W 2025 Commun. Phys-UK 8
[18] Wang S C, Zhou Z K, Zheng Z C, Sun J L, Cao H K, Song S C, Deng Z L, Qin F, Cao Y Y, Li X P 2024 Phys. Rev. Lett 133 073802
[19] Teng H A, Zhong J Z, Chen J, Lei X R, Zhan Q W 2023 Photonics. Res 11
[20] Singh K, Ornelas P, Dudley A, Forbes A 2023 Opt. Express 31 15289
[21] Allam S R, Yoneda Y, Omatsu T 2025 arXiv preprint arXiv:.10760
[22] Srinivasa Rao A 2024 J. Opt. Soc. Am. A 41 1059
[23] Li T Y, Liu M J, Chen C, Li X Y, Hou J H, Yang X, Wang S M, Zhu S N 2024 J. Optics-UK 26
[24] Lin W B, Ota Y, Arakawa Y, Iwamoto S 2024 Optica 11
[25] Rao L X, Wang J J, Wang X H, Wu S B, Zhao X Q, Liu W Z, Xie R S, Shen Y J, Shi L, Zi J 2025 Phys. Rev. Lett 135 026203
[26] Mata-Cervera N, Sharma D K, Shen Y, Paniagua-Dominguez R, Porras M A 2025 Phys. Rev. Lett 135 033805
[27] Gao S J, Speirits F C, Castellucci F, Franke-Arnold S, Barnett S M, Götte J B 2020 Phys. Rev. A 102
[28] Ye Z, Barnett S M, Franke-Arnold S, Götte J B, McWilliam A, Speirits F C, Cisowski C M 2024 P. Roy. Soc. A-Math. Phy 480
[29] Mata-Cervera N, Xie Z Y, Li C, Yu H Y, Ren H R, Shen Y J, Maier S A 2025 Nanophotonics 14 4069
[30] Wang A A, Ma Y F, Zhang Y Q, Zhao Z M, Cai Y X, Qiu X K, Dong B W, He C 2024 arXiv preprint arXiv:.16311
[31] Chen W T, Khorasaninejad M, Zhu A Y, Oh J, Devlin R C, Zaidi A, Capasso F 2017 Light-Sci. Appl 6 e16259
[32] Devlin R C, Ambrosio A, Rubin N A, Mueller J P B, Capasso F 2017 Science 358 896
[33] He T T, Meng Y, Wang L L, Zhong H K, Mata-Cervera N, Li D, Yan P, Liu Q, Shen Y J, Xiao Q R 2024 Nat. Commun 15 10141
[34] Hakobyan V, Shen Y, Brasselet E 2024 Phys. Rev. Appl 22
[35] Hakobyan V, Brasselet E 2025 Phys. Rev. Lett 134 083802
[36] Cao T, Wang R Z, Simpson R E, Li G X 2020 Prog. Quant. Electron 74
[37] Jepsen P U, Fischer B M, Thoman A, Helm H, Suh J Y, Lopez R, Haglund R F 2006 Phys. Rev. B 74 205103
[38] Arbabi E, Arbabi A, Kamali S M, Horie Y, Faraji-Dana M, Faraon A 2018 Nat. Commun 9 812
[39] Bernet S 2021 J. Opt. Soc. Am. A 38 1521
[40] Pander A, Kagami H, Kitayama D, Hamada H, Takahashi H 2025 Optica 12 1327
[41] Dai J M, Zhang J Q, Zhang W L, Grischkowsky D 2004 J. Opt. Soc. Am. B 21
[42] Fu Y, Chen Z H, Tang Z L, Ji Y H 2021 Appl. Optics 60 8472
Metrics
- Abstract views: 18
- PDF Downloads: 0
- Cited By: 0









下载: