-
Adiabatic shear bands (ASBs) are a critical mechanism for damage initiation under high strain-rate shear impact, whereas the high-current-density-induced shear deformation mechanism of armature and rail materials remains unclear. This study employs a pulsed power source and an electromagnetic repulsion disk device to investigate the shear deformation characteristics of typical armature and rail materials under high strain rates (≥104 s-1 ) coupled with high current densities (≥108 A/m2 ). The results show that the ASB formation energy barrier decreases in the following order: pure copper, oxygen-free copper, CuCrZr alloy, Al2O3 dispersion-strengthened copper alloy, brass, and 7075 aluminum alloy. Therefore, 7075 aluminum alloy is the most prone to ASB formation, followed by brass, while other copper-based rail materials rarely exhibit ASB features. Both 7075 aluminum alloy and brass exhibit a current-induced suppression effect on crack propagation and ASB formation. Electron backscatter diffraction (EBSD) analysis reveals that numerous fine equiaxed grains are present within the shear bands of 7075 aluminum, and the texture within the bands significantly differs from that of the surrounding matrix. With increasing current density, the grain size within the band increases, while the fraction of dynamically recrystallized grains decreases markedly. The formation of ultrafine grains and the texture evolution can be reasonably explained by mechanically assisted rotational dynamic recrystallization. The results indicate that thermal softening alone is insufficient to induce ASB formation; instead, softening caused by rotational dynamic recrystallization is the dominant mechanism. The current-induced temperature rise was calculated, and the yield strength drop under high-strain-rate loading with current was measured, based on which the width of adiabatic shear bands (ASBs) under current was determined. The theoretical predictions show good agreement with experimental results. The results indicate that the temperature rise and softening effect induced by pulsed current lead to an increase in ASB width, which intensifies energy dissipation, suppresses dynamic recrystallization, and inhibits the formation of adiabatic shear bands.
-
Keywords:
- Electromagnetic launch /
- Armature and rail materials /
- adiabatic shear band /
- rotational dynamic recrystallization
-
[1] Li B, Li W C, Jing C K 2023 J. Ordnance Equip. Eng. 44 173(in Chinese) [李兵,李卫超,荆从凯 2023 兵器装备工程学报 44 173]
[2] Ma W M, Lu J Y 2023 Trans. China Electrotech. Soc. 38 3943(in Chinese) [马伟明,鲁军勇 2023 电工技术学报 38 3943]
[3] Sun Z G, Liu Y P, Hao X B 2022 Adv. Technol. Electr. Eng. Energy 41 49(in Chinese) [孙志刚,刘宇鹏,郝兴斌 2022 电工电能新技术 41 49]
[4] Lu J Y, Hu X K, Tan S, Li B 2023 J. Huazhong Univ. Sci. Technol. 51 84(in Chinese) [鲁军勇,胡鑫凯,谭赛,李白 2023 华中科技大学学报 51 84]
[5] HaoS Y, Cao Z Y, An R, Zhang S L, Li W H, Shi H T, Chen L, Li X W 2026 Wear. 584 206362
[6] Lu X Q, Liu S W, Du X Y, Zheng T Y, Yang K F 2025 Sci. Rep. 15 21120
[7] Li C X, Wu G, Wang B Y, Li Y, Gu A B, Xu J H 2025 IEEE Trans. Plasma Sci. 53 3554
[8] Wu J G 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese) [吴金国 2018 博士学位论文 (南京: 南京理工大学)]
[9] Li J G, Dou Q B, Suo T 2021 Chin. Sci. Bull. 66 4081(in Chinese) [李建国,豆清波,索涛 2021 科学通报 66 4081]
[10] Wright T W, Walter J W 1987 J. Mech. Phys. Solids 35 701
[11] Lieou C K C, Bronkhorst C A 2018 Int. J. Plast. 111 107
[12] Guo Y Z, Ruan Q C, Zhu S X, Wei Q, Chen H S, Lu J N, Hu B, Wu X H, Li Y L, Fang D N 2019 Phys. Rev. Lett. 122 015503
[13] Rittel D, Landau P, Venkert A 2008 Phys. Rev. Lett. 101 165501
[14] Magagnosc D J, Lloyd J T, Meredith C S, Pilchak A L, Schuster B E 2021 Int. J. Plast. 141 102992
[15] Li J, Kan X K, Li L K, Chen H S, Suo T 2026 Int. J. Impact Eng. 209 105568
[16] Li Y X, Wang L, Yan Z W, Zhou Z, Ning Z X, Liu A J 2021 Titanium Ind. Prog. 38 12 (in Chinese) [李严星,王琳,闫志维,周哲,宁子轩,刘安晋 2021 钛工业进展 38 12]
[17] Wang C, Wang W, Luo C C, Zhou S Q, Wang K S, Cai J H, Xin S W 2025 J. Mater. Res. Technol. 39 4610
[18] Liu X Y, Mao P L, Wu X X, Zhou L, Wang Z, Liu Z, Wang F 2024 J. Mater. Eng. Perform. 33 398
[19] Regidor H C, Pasco J, Nyamuchiwa K, Mercado C, Aranas C J R 2025 Mater. Today Commun. 49 114412
[20] Xiao A, Huang C, Yan Z, Cui X H, Wang S P 2022 Mater. Charact. 183 111615
[21] Zhou C, Liu Z R, Zhu D B, Hui S M, Zhan L H 2026 Mater. Sci. Eng. A. 949 149444
[22] Ross C D, Kronenberger T J, Roth J T 2009 J. Eng. Mater. Technol. 131 031004
[23] Zhao Z Y, Wang G F, Hou H L, Zhang Y L, Wang Y Q 2018 Sci. Rep. 8 14748
[24] Liu J H, Jia D Z, Fu Y, Kong X Q, Lv Z L, Zeng E J, Gao Q 2024 Int. J. Adv. Manuf. Technol. 131 3267
[25] Abdullina D U, Kuzkin V A, Kudreyko A A, Krivtsov A M, Dmitriev S V 2025 Phys. Rev. B. 112 144310
[26] Gu S J, Kimura Y, Yan X M, Liu C, Cui Y, Ju Y, Toku Y 2024 Nat. Commun. 15 6044
[27] Li H, Jin F Z, Zhang M Y, Ding J H, Bian T J, Li J H, Ma J, Zhang L W, Wang Y F 2023 Mater. Sci. Eng. A. 881 145435
[28] Zhao S T, Zhang R P, Chong Y, Li X, Zhou N, Zhang Z W, Shen L, Nie J F, Liao X Z, Zhu Y T 2021 Nat. Mater. 20 468
[29] Zhang X, Yu H P, Li C F, Wang Y, Xu S Q, Zhou J 2014 Int. J. Adv. Manuf. Technol. 73 1751
[30] Chen L X, Zhang W H, Li L D, Xu S Q, Xu X, Feng H W, Xiao T Y, Zhao B X 2025 IEEE Trans. Plasma Sci. 53 2791
[31] Siopis M J, Neu R W 2013 IEEE Trans. Magn. 49 4831
[32] Qin Y, Wu Z Y, Wu B Y, Wang G Y, Gao J, Chen C Y, Yang Y, Huang M, Yang S 2025 J. Mater. Res. Technol. 39 8098
[33] Qian X Y, Peng X B, Song Y T, Huang J J, Wei Y P, Liu P, Mao X, Zhang JW, Wang L. 2020 Nucl. Mater. Energy. 24 100768
[34] Chen L, Shi H, Li W H, Shi H T, Li X W, Hao S Y, Li C C, An R 2024 Rev. Sci. Instrum. 95 124705
[35] Ran C, Chen P 2018 Mater. Lett. 232 142
[36] Hu Q C, Li W H, Li C C, Chen L, Li X W 2024 Trans. China Electrotech. Soc. 39 5937 (in Chinese) [胡前程,李伟昊,李成成,陈立,李兴文 2024 电工技术学报 39 5937]
[37] Karantza K D, Manolakos D E 2023 Metals 13 1988
[38] Li D H, Yang Y, Xu T, Zhang X, Wang Q 2010 Mater. Sci. Eng. A 527 3529
[39] Xu W, Chen X, Pan F 2023 Mater. Sci. Eng. A 882 145465
[40] Li J, Li Y, Huang C, Suo T, Wei Q 2017 Acta Mater. 141 163
[41] Huang K, Logé R E 2016 Mater. Des. 111 548
[42] Li J Q, Xu B C 2017 Int. J. Adv. Manuf. Technol. 93 1859
[43] Grady D E 1994 Mech. Mater. 17 289
[44] Fathy A, El-Kady O 2013 Mater. Des. 46 355
[45] Hanzelka P, Musilova V, Kralik T, Vonka J 2010 Cryogenics 50 737
[46] Wallis C, Buchmayr B 2019 Mater. Sci. Eng. A 744 215
[47] Okada A, Kiritani M 2002 Radiat. Eff. Defects Solids 157 157
[48] Xie H B, Yang H Y, Yu J, Gao M Y, Shou J D, Fang Y T, Liu J B, Wang H T 2021 Def. Technol. 17 429
[49] Zhang S, Zhou W, Hu C, Hu F, Yershov S, Wu K 2025 Mater. Today Commun. 49 113808
[50] Tang L, Chen Z, Zhan C, Yang X, Liu C, Cai H 2012 Mater. Charact. 64 21
[51] Hines J A, Vecchio K S 1997 Acta Mater. 45 635
[52] Meyers M A, Nesterenko V F, LaSalvia J C, Xue Q 2001 Mater. Sci. Eng. A 317 204
[53] Zhen L, Zou D L, Xu C Y, Li W, Zhang Y, Li J 2010 Mater. Sci. Eng. A 527 5728
[54] Yang Y, Jiang F, Zhou B M, Li X M, Zheng H G, Zhang Q M 2011 Mater. Sci. Eng. A 528 2787
[55] Meyers M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R 2003 Acta Mater. 51 1307
[56] Wang B, Ma R, Zhou J, Li Z, Zhao S, Huang X 2016 Mater. Sci. Eng. A 675 221
[57] Hines J A, Vecchio K S, Ahzi S 1998 Metall. Mater. Trans. A 29 191
[58] Zhang W L, He L J, Lu Z G, Kennedy G B, Thadhani N N, Li P J 2020 Acta Mater. 791 139430
[59] Derby B, Ashby M F 1987 Scripta Metall. 21 879
[60] Conrad H 2000 Mater. Sci. Eng. A 287 276
[61] Molotskii M, Fleurov V 1995 Phys. Rev. B 52 15829
[62] Okazaki K, Kagawa M, Conrad H 1980 Mater. Sci. Eng. 45 109
[63] Kim M J, Yoon S, Park S, Jeong H J, Park J W, Kim K, Jo J, Heo T, Hong S T, Cho S H, Kwon Y K, Choi I S, Kim M, Han H N 2020 Appl. Mater. Today 21 100874
Metrics
- Abstract views: 13
- PDF Downloads: 0
- Cited By: 0









下载: