Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Research on the Influence of Pulsed Current on the High Strain Rate Shear Behavior of Typical Armature and Rail Materials

LI Chengcheng ZHOU Jingjia LI Weihao SHI Huantong LI Xingwen CHEN Li

Citation:

Research on the Influence of Pulsed Current on the High Strain Rate Shear Behavior of Typical Armature and Rail Materials

LI Chengcheng, ZHOU Jingjia, LI Weihao, SHI Huantong, LI Xingwen, CHEN Li
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • Adiabatic shear bands (ASBs) are a critical mechanism for damage initiation under high strain-rate shear impact, whereas the high-current-density-induced shear deformation mechanism of armature and rail materials remains unclear. This study employs a pulsed power source and an electromagnetic repulsion disk device to investigate the shear deformation characteristics of typical armature and rail materials under high strain rates (≥104 s-1 ) coupled with high current densities (≥108 A/m2 ). The results show that the ASB formation energy barrier decreases in the following order: pure copper, oxygen-free copper, CuCrZr alloy, Al2O3 dispersion-strengthened copper alloy, brass, and 7075 aluminum alloy. Therefore, 7075 aluminum alloy is the most prone to ASB formation, followed by brass, while other copper-based rail materials rarely exhibit ASB features. Both 7075 aluminum alloy and brass exhibit a current-induced suppression effect on crack propagation and ASB formation. Electron backscatter diffraction (EBSD) analysis reveals that numerous fine equiaxed grains are present within the shear bands of 7075 aluminum, and the texture within the bands significantly differs from that of the surrounding matrix. With increasing current density, the grain size within the band increases, while the fraction of dynamically recrystallized grains decreases markedly. The formation of ultrafine grains and the texture evolution can be reasonably explained by mechanically assisted rotational dynamic recrystallization. The results indicate that thermal softening alone is insufficient to induce ASB formation; instead, softening caused by rotational dynamic recrystallization is the dominant mechanism. The current-induced temperature rise was calculated, and the yield strength drop under high-strain-rate loading with current was measured, based on which the width of adiabatic shear bands (ASBs) under current was determined. The theoretical predictions show good agreement with experimental results. The results indicate that the temperature rise and softening effect induced by pulsed current lead to an increase in ASB width, which intensifies energy dissipation, suppresses dynamic recrystallization, and inhibits the formation of adiabatic shear bands.
  • [1]

    Li B, Li W C, Jing C K 2023 J. Ordnance Equip. Eng. 44 173(in Chinese) [李兵,李卫超,荆从凯 2023 兵器装备工程学报 44 173]

    [2]

    Ma W M, Lu J Y 2023 Trans. China Electrotech. Soc. 38 3943(in Chinese) [马伟明,鲁军勇 2023 电工技术学报 38 3943]

    [3]

    Sun Z G, Liu Y P, Hao X B 2022 Adv. Technol. Electr. Eng. Energy 41 49(in Chinese) [孙志刚,刘宇鹏,郝兴斌 2022 电工电能新技术 41 49]

    [4]

    Lu J Y, Hu X K, Tan S, Li B 2023 J. Huazhong Univ. Sci. Technol. 51 84(in Chinese) [鲁军勇,胡鑫凯,谭赛,李白 2023 华中科技大学学报 51 84]

    [5]

    HaoS Y, Cao Z Y, An R, Zhang S L, Li W H, Shi H T, Chen L, Li X W 2026 Wear. 584 206362

    [6]

    Lu X Q, Liu S W, Du X Y, Zheng T Y, Yang K F 2025 Sci. Rep. 15 21120

    [7]

    Li C X, Wu G, Wang B Y, Li Y, Gu A B, Xu J H 2025 IEEE Trans. Plasma Sci. 53 3554

    [8]

    Wu J G 2018 Ph. D. Dissertation (Nanjing: Nanjing University of Science and Technology)(in Chinese) [吴金国 2018 博士学位论文 (南京: 南京理工大学)]

    [9]

    Li J G, Dou Q B, Suo T 2021 Chin. Sci. Bull. 66 4081(in Chinese) [李建国,豆清波,索涛 2021 科学通报 66 4081]

    [10]

    Wright T W, Walter J W 1987 J. Mech. Phys. Solids 35 701

    [11]

    Lieou C K C, Bronkhorst C A 2018 Int. J. Plast. 111 107

    [12]

    Guo Y Z, Ruan Q C, Zhu S X, Wei Q, Chen H S, Lu J N, Hu B, Wu X H, Li Y L, Fang D N 2019 Phys. Rev. Lett. 122 015503

    [13]

    Rittel D, Landau P, Venkert A 2008 Phys. Rev. Lett. 101 165501

    [14]

    Magagnosc D J, Lloyd J T, Meredith C S, Pilchak A L, Schuster B E 2021 Int. J. Plast. 141 102992

    [15]

    Li J, Kan X K, Li L K, Chen H S, Suo T 2026 Int. J. Impact Eng. 209 105568

    [16]

    Li Y X, Wang L, Yan Z W, Zhou Z, Ning Z X, Liu A J 2021 Titanium Ind. Prog. 38 12 (in Chinese) [李严星,王琳,闫志维,周哲,宁子轩,刘安晋 2021 钛工业进展 38 12]

    [17]

    Wang C, Wang W, Luo C C, Zhou S Q, Wang K S, Cai J H, Xin S W 2025 J. Mater. Res. Technol. 39 4610

    [18]

    Liu X Y, Mao P L, Wu X X, Zhou L, Wang Z, Liu Z, Wang F 2024 J. Mater. Eng. Perform. 33 398

    [19]

    Regidor H C, Pasco J, Nyamuchiwa K, Mercado C, Aranas C J R 2025 Mater. Today Commun. 49 114412

    [20]

    Xiao A, Huang C, Yan Z, Cui X H, Wang S P 2022 Mater. Charact. 183 111615

    [21]

    Zhou C, Liu Z R, Zhu D B, Hui S M, Zhan L H 2026 Mater. Sci. Eng. A. 949 149444

    [22]

    Ross C D, Kronenberger T J, Roth J T 2009 J. Eng. Mater. Technol. 131 031004

    [23]

    Zhao Z Y, Wang G F, Hou H L, Zhang Y L, Wang Y Q 2018 Sci. Rep. 8 14748

    [24]

    Liu J H, Jia D Z, Fu Y, Kong X Q, Lv Z L, Zeng E J, Gao Q 2024 Int. J. Adv. Manuf. Technol. 131 3267

    [25]

    Abdullina D U, Kuzkin V A, Kudreyko A A, Krivtsov A M, Dmitriev S V 2025 Phys. Rev. B. 112 144310

    [26]

    Gu S J, Kimura Y, Yan X M, Liu C, Cui Y, Ju Y, Toku Y 2024 Nat. Commun. 15 6044

    [27]

    Li H, Jin F Z, Zhang M Y, Ding J H, Bian T J, Li J H, Ma J, Zhang L W, Wang Y F 2023 Mater. Sci. Eng. A. 881 145435

    [28]

    Zhao S T, Zhang R P, Chong Y, Li X, Zhou N, Zhang Z W, Shen L, Nie J F, Liao X Z, Zhu Y T 2021 Nat. Mater. 20 468

    [29]

    Zhang X, Yu H P, Li C F, Wang Y, Xu S Q, Zhou J 2014 Int. J. Adv. Manuf. Technol. 73 1751

    [30]

    Chen L X, Zhang W H, Li L D, Xu S Q, Xu X, Feng H W, Xiao T Y, Zhao B X 2025 IEEE Trans. Plasma Sci. 53 2791

    [31]

    Siopis M J, Neu R W 2013 IEEE Trans. Magn. 49 4831

    [32]

    Qin Y, Wu Z Y, Wu B Y, Wang G Y, Gao J, Chen C Y, Yang Y, Huang M, Yang S 2025 J. Mater. Res. Technol. 39 8098

    [33]

    Qian X Y, Peng X B, Song Y T, Huang J J, Wei Y P, Liu P, Mao X, Zhang JW, Wang L. 2020 Nucl. Mater. Energy. 24 100768

    [34]

    Chen L, Shi H, Li W H, Shi H T, Li X W, Hao S Y, Li C C, An R 2024 Rev. Sci. Instrum. 95 124705

    [35]

    Ran C, Chen P 2018 Mater. Lett. 232 142

    [36]

    Hu Q C, Li W H, Li C C, Chen L, Li X W 2024 Trans. China Electrotech. Soc. 39 5937 (in Chinese) [胡前程,李伟昊,李成成,陈立,李兴文 2024 电工技术学报 39 5937]

    [37]

    Karantza K D, Manolakos D E 2023 Metals 13 1988

    [38]

    Li D H, Yang Y, Xu T, Zhang X, Wang Q 2010 Mater. Sci. Eng. A 527 3529

    [39]

    Xu W, Chen X, Pan F 2023 Mater. Sci. Eng. A 882 145465

    [40]

    Li J, Li Y, Huang C, Suo T, Wei Q 2017 Acta Mater. 141 163

    [41]

    Huang K, Logé R E 2016 Mater. Des. 111 548

    [42]

    Li J Q, Xu B C 2017 Int. J. Adv. Manuf. Technol. 93 1859

    [43]

    Grady D E 1994 Mech. Mater. 17 289

    [44]

    Fathy A, El-Kady O 2013 Mater. Des. 46 355

    [45]

    Hanzelka P, Musilova V, Kralik T, Vonka J 2010 Cryogenics 50 737

    [46]

    Wallis C, Buchmayr B 2019 Mater. Sci. Eng. A 744 215

    [47]

    Okada A, Kiritani M 2002 Radiat. Eff. Defects Solids 157 157

    [48]

    Xie H B, Yang H Y, Yu J, Gao M Y, Shou J D, Fang Y T, Liu J B, Wang H T 2021 Def. Technol. 17 429

    [49]

    Zhang S, Zhou W, Hu C, Hu F, Yershov S, Wu K 2025 Mater. Today Commun. 49 113808

    [50]

    Tang L, Chen Z, Zhan C, Yang X, Liu C, Cai H 2012 Mater. Charact. 64 21

    [51]

    Hines J A, Vecchio K S 1997 Acta Mater. 45 635

    [52]

    Meyers M A, Nesterenko V F, LaSalvia J C, Xue Q 2001 Mater. Sci. Eng. A 317 204

    [53]

    Zhen L, Zou D L, Xu C Y, Li W, Zhang Y, Li J 2010 Mater. Sci. Eng. A 527 5728

    [54]

    Yang Y, Jiang F, Zhou B M, Li X M, Zheng H G, Zhang Q M 2011 Mater. Sci. Eng. A 528 2787

    [55]

    Meyers M A, Xu Y B, Xue Q, Perez-Prado M T, McNelley T R 2003 Acta Mater. 51 1307

    [56]

    Wang B, Ma R, Zhou J, Li Z, Zhao S, Huang X 2016 Mater. Sci. Eng. A 675 221

    [57]

    Hines J A, Vecchio K S, Ahzi S 1998 Metall. Mater. Trans. A 29 191

    [58]

    Zhang W L, He L J, Lu Z G, Kennedy G B, Thadhani N N, Li P J 2020 Acta Mater. 791 139430

    [59]

    Derby B, Ashby M F 1987 Scripta Metall. 21 879

    [60]

    Conrad H 2000 Mater. Sci. Eng. A 287 276

    [61]

    Molotskii M, Fleurov V 1995 Phys. Rev. B 52 15829

    [62]

    Okazaki K, Kagawa M, Conrad H 1980 Mater. Sci. Eng. 45 109

    [63]

    Kim M J, Yoon S, Park S, Jeong H J, Park J W, Kim K, Jo J, Heo T, Hong S T, Cho S H, Kwon Y K, Choi I S, Kim M, Han H N 2020 Appl. Mater. Today 21 100874

  • [1] LI Guoxuan, FAN Hailong. Synergistic effect of rotation and strong shear flow on interface instability in laser additive manufacturing of dilute alloys. Acta Physica Sinica, doi: 10.7498/aps.74.20250829
    [2] WANG Shoucheng, PAN Qiangqiang, NING Rui, PENG Hailong. Shear banding behavior in soft-hard phase ordered metallic glasses. Acta Physica Sinica, doi: 10.7498/aps.74.20250845
    [3] Zhang Zi-Fa, Yuan Xiang, Lu Ying-Shen, He Dan-Min, Yan Quan-He, Cao Hao-Yu, Hong Feng, Jiang Zui-Min, Xu Run, Ma Zhong-Quan, Song Hong-Wei, Xu Fei. Improving crystallization and photoelectric performance of CsPbI2Br perovskite under ambient air via dynamic hot-air assisted recrystallization strategy. Acta Physica Sinica, doi: 10.7498/aps.73.20240153
    [4] Zhang Guo-Shuai, Yin Chao, Wang Zhao-Fan, Chen Ze, Mao Shi-Feng, Ye Min-You. Simulation of neutron irradiation-induced recrystallization of tungsten. Acta Physica Sinica, doi: 10.7498/aps.72.20230531
    [5] Zeng Jian-Jian, Bao Li-Juan. Stabilizing multi-rotation periodic trajectories by the time-varying switching extended time-delay feedback control. Acta Physica Sinica, doi: 10.7498/aps.72.20222294
    [6] Cao Qi-Zhi, Tang Jin-Feng, Pan Yang-Liu, Jiang Min, Jiang Si-Yue, Zhang Jing, Jia Chen-Ling, Fan Dong-Xin, Deng Ting, Wang Hua-Hua, Duan Lian. Dynamic calibration of linear shear spatial modulation snapshot imaging polarimeter. Acta Physica Sinica, doi: 10.7498/aps.71.20220229
    [7] Xin Cheng-Zhou, Ma Jian-Nan, Ma Jing, Nan Ce-Wen. Magnetoelectric effect in stretch-shear mode self-biased LiNbO3 based composite with high-frequency resonant response. Acta Physica Sinica, doi: 10.7498/aps.67.20180810
    [8] Xin Cheng-Zhou, Ma Jian-Nan, Ma Jing, Nan Ce-Wen. Optimization of magnetoelectricity in thickness shear mode LiNbO3/magnetostrictive laminated composite. Acta Physica Sinica, doi: 10.7498/aps.66.067502
    [9] Zhang Da-Yu, Luo Jian-Jun, Zheng Yin-Huan, Yuan Jian-Ping. Analysis of planar shear deformable beam using rotation field curvature formulation. Acta Physica Sinica, doi: 10.7498/aps.66.114501
    [10] Chen Li-Juan, Lu Shi-Ping. The periodic problem of drift motion of the guidance center in the earth’s magnetosphere electromagnetic field. Acta Physica Sinica, doi: 10.7498/aps.63.190202
    [11] Gao Yue, Fu Shi-Hua, Cai Yu-Long, Cheng Teng, Zhang Qing-Chuan. Digital shearography investigation on the out-plane deformation of the Portevin-Le Chatelier bands. Acta Physica Sinica, doi: 10.7498/aps.63.066201
    [12] Zhang Yan, Liu Yi-Mou, Han Ming, Wang Gang-Cheng, Cui Cui-Li, Zheng Tai-Yu. Dynamic generation and manipulaition of electromagnetically induced 2D phtonic band-gaps. Acta Physica Sinica, doi: 10.7498/aps.63.224203
    [13] Ji Le, Yang Sheng-Zhi, Cai Jie, Li Yan, Wang Xiao-Tong, Zhang Zai-Qiang, Hou Xiu-Li, Guan Qing-Feng. Damage and structural defects in the surface lager of pure molybdenum induced by high-current pulsed electron beam. Acta Physica Sinica, doi: 10.7498/aps.62.236103
    [14] Xu Shu-Jie, Shi Chun-Sheng, Zhao Nai-Qin, Liu En-Zuo. Dynamic recrystallization phenomenon in hot-working process by multi-phase-field model. Acta Physica Sinica, doi: 10.7498/aps.61.116101
    [15] Bi Zhong-Wei, Sun Qi-Cheng, Liu Jian-Guo, Jin Feng, Zhang Chu-Han. Development of shear band in a granular material in biaxial tests. Acta Physica Sinica, doi: 10.7498/aps.60.034502
    [16] Liu Pei-Sheng. Analysis of shearing failure mode for porous materials under compression. Acta Physica Sinica, doi: 10.7498/aps.59.4849
    [17] Wang Xiao-Xia, Liao Xian-Heng, Luo Ji-Run, Zhao Qing-Lan. Preparation and emission properties of a sub-micrometer carbonate emission material. Acta Physica Sinica, doi: 10.7498/aps.57.1924
    [18] CHOU PANG-HSIN, YEN MING-KAO. THE EFFECT OF PHOSPHOROUS ON THE RECRYSTALLIZATION BEHAVIOR OF COLD-ROLLED COPPER STRIPS. Acta Physica Sinica, doi: 10.7498/aps.19.633
    [19] TAT LI-CHI, CHANG SIN-YU. THE ROLLING AND RECRYSTALLIZATION TEXTURES OF ARMCO IRON. Acta Physica Sinica, doi: 10.7498/aps.14.17
    [20] YEN MING-KAO, CHOU PANG-HSIN. THE DEVELOPMENT OF RECRYSTALLIZATION TEXTURE OF COLD-ROLLED COPPER STRIPS. Acta Physica Sinica, doi: 10.7498/aps.14.121
Metrics
  • Abstract views:  13
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  25 December 2025
  • /

    返回文章
    返回