搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步

赵灵冬 胡建兵 包志华 章国安 徐晨 张士兵

分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步

赵灵冬, 胡建兵, 包志华, 章国安, 徐晨, 张士兵
PDF
导出引用
导出核心图
  • 研究了分数阶系统有限时间稳定性理论及分数阶混沌系统的同步问题.根据分数阶微分性质及分数阶系统稳定性理论,建立了分数阶系统有限时间稳定性理论并进行了证明.根据该理论设计控制器实现了分数阶超混沌Lorenz系统有限时间同步并运用数值仿真进行了验证.
    • 基金项目: 国家自然科学基金(批准号: 50875132)和南通大学自然科学基金(批准号: 10Z021)资助的课题.
    [1]

    Chen J R, Tao R J 2001 Journal of Shanghai University 5 292

    [2]

    Chen W,Zhang X D, Korosak D. 2010 Int. J. Nonlin. Sci. Num. 11 3

    [3]

    Li Z B 2010 Int. J. Nonlin. Sci. Num. 11 335

    [4]

    Li Z B, He J H 2010 Mathematical & Computational Applications 15 970

    [5]

    Cui B T, Ji Y, Qiu F 2009 Chin. Phys. B 18 5203

    [6]

    Wu X J, Lu H T, Shen S L 2009 Phys. Lett. A 373 2329

    [7]

    Mohammad Saleh Tavazoei, Mohammad Haeri 2008 Physica A 387 57

    [8]

    Liu C X 2004 Chaos Solitons and Fractals 22 1031

    [9]

    Jia H Y, Chen Z Q, Yuan Z Z 2010 Chin. Phys.B 19 507

    [10]

    Hu J B, Han Y, Zhao L D 2008 Acta Phys.Sin.57 7522 (in Chinese) [胡建兵、韩 焱、赵灵冬 2008 物理学报 57 7522]

    [11]

    Zhang R X, Yang S P 2009 Journal of Hebei Normal University 33 37 (in Chinese) [张若洵、杨世平 2009 河北师范大学学报 33 37]

    [12]

    Vedat Suat Erturk,Shaher Momani,Zaid Odibat 2008 J. Cnsns 1642

    [13]

    Liu Y F, Yang X G, Miu D, Yuan R P 2007 Acta Phys. Sin. 56 6250 (in Chinese) [刘云峰、杨小冈、缪 栋、袁润平 2007 物理学报 56 6250]

    [14]

    Aghababa MP, Khanmohammadi S, Alizadeh G 2011 Applied Mathematical Modeling 35 3080

    [15]

    Liu D, Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese)[刘丁、闫晓妹 2009 物理学报 58 3747]

    [16]

    Podlubny I 1999 Fractional differential equations (San Diego : Academic Press) p18

    [17]

    He J H 2011 Thermal Science 15 145

    [18]

    Matignon D. 1996 IMACS, IEEE-SMC, Lille (France)

  • [1]

    Chen J R, Tao R J 2001 Journal of Shanghai University 5 292

    [2]

    Chen W,Zhang X D, Korosak D. 2010 Int. J. Nonlin. Sci. Num. 11 3

    [3]

    Li Z B 2010 Int. J. Nonlin. Sci. Num. 11 335

    [4]

    Li Z B, He J H 2010 Mathematical & Computational Applications 15 970

    [5]

    Cui B T, Ji Y, Qiu F 2009 Chin. Phys. B 18 5203

    [6]

    Wu X J, Lu H T, Shen S L 2009 Phys. Lett. A 373 2329

    [7]

    Mohammad Saleh Tavazoei, Mohammad Haeri 2008 Physica A 387 57

    [8]

    Liu C X 2004 Chaos Solitons and Fractals 22 1031

    [9]

    Jia H Y, Chen Z Q, Yuan Z Z 2010 Chin. Phys.B 19 507

    [10]

    Hu J B, Han Y, Zhao L D 2008 Acta Phys.Sin.57 7522 (in Chinese) [胡建兵、韩 焱、赵灵冬 2008 物理学报 57 7522]

    [11]

    Zhang R X, Yang S P 2009 Journal of Hebei Normal University 33 37 (in Chinese) [张若洵、杨世平 2009 河北师范大学学报 33 37]

    [12]

    Vedat Suat Erturk,Shaher Momani,Zaid Odibat 2008 J. Cnsns 1642

    [13]

    Liu Y F, Yang X G, Miu D, Yuan R P 2007 Acta Phys. Sin. 56 6250 (in Chinese) [刘云峰、杨小冈、缪 栋、袁润平 2007 物理学报 56 6250]

    [14]

    Aghababa MP, Khanmohammadi S, Alizadeh G 2011 Applied Mathematical Modeling 35 3080

    [15]

    Liu D, Yan X M 2009 Acta Phys. Sin. 58 3747 (in Chinese)[刘丁、闫晓妹 2009 物理学报 58 3747]

    [16]

    Podlubny I 1999 Fractional differential equations (San Diego : Academic Press) p18

    [17]

    He J H 2011 Thermal Science 15 145

    [18]

    Matignon D. 1996 IMACS, IEEE-SMC, Lille (France)

  • 引用本文:
    Citation:
计量
  • 文章访问数:  4764
  • PDF下载量:  963
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-03-18
  • 修回日期:  2011-05-19
  • 刊出日期:  2011-05-05

分数阶系统有限时间稳定性理论及分数阶超混沌Lorenz系统有限时间同步

  • 1. 南通大学电子信息学院,南通 226019
    基金项目: 

    国家自然科学基金(批准号: 50875132)和南通大学自然科学基金(批准号: 10Z021)资助的课题.

摘要: 研究了分数阶系统有限时间稳定性理论及分数阶混沌系统的同步问题.根据分数阶微分性质及分数阶系统稳定性理论,建立了分数阶系统有限时间稳定性理论并进行了证明.根据该理论设计控制器实现了分数阶超混沌Lorenz系统有限时间同步并运用数值仿真进行了验证.

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回