搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超短沟道MOSFET电势的二维半解析模型

韩名君 柯导明 迟晓丽 王敏 王保童

引用本文:
Citation:

超短沟道MOSFET电势的二维半解析模型

韩名君, 柯导明, 迟晓丽, 王敏, 王保童

A 2D semi-analytical model for the potential distribution of ultra-short channel MOSFET

Han Ming-Jun, Ke Dao-Ming, Chi Xiao-Li, Wang Min, Wang Bao-Tong
PDF
导出引用
  • 本文根据超短沟道MOSFET的工作原理, 在绝缘栅和空间电荷区引入两个矩形源, 提出了亚阈值下电势二维分布的定解问题. 通过半解析法和谱方法相结合, 首次得到了该定解问题的二维半解析解, 解的结果是一个特殊函数, 为无穷级数表达式. 该模型的优点是避免了数值分析时的方程离散化, 表达式不含适配参数、运算量小、精度与数值解的精度相同, 可直接用于电路模拟程序. 文中计算了沟道长度是45—22 nm的MOSFET电势、表面势和阈值电压. 结果表明, 新模型与Medici数值分析结果相同.
    Based on the principle of ultra-short channel MOSFET, a definite solution of potential is proposed by introducing two rectangular sources between the insulated gate and the space-charge region. By using the semi-analytical method and the spectral method, the 2D semi-analytical solution has been obtained for the first time as faras we know. The solution is a special function for the infinite series expressions. The most advantage of this model is that it can not only be calculated directly without numerical analysis but also keep the same accuracy as that of numerical solution. In addition, this model, which can be directly used in circuit simulation, has the characteristics that in its expression there is no adapter parameter with small calculating amount. The potential, surface potential and threshold of 45—22 nm MOSFET have been calculated in the frame of this model. It is shown that the calculated results are identical with Medici.
    • 基金项目: 国家自然科学基金(批准号:61076086)和高等学校博士学科点专项科研基金(批准号:2103401110008)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61076086), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 2103401110008).
    [1]

    Kasai R, Yokoyamak, Yoshiia A, Sudo T 1982 IEEE Trans. on Electron Devices 29 870

    [2]

    Hadji D, Marchal Y 1999 IEEE Trans. Magnetics 35 1809

    [3]

    Rios R, Mudanai S, Shih W K, Packan P 2004 IEDM Tech. Dig. 755

    [4]

    He Jin, Chan Mansun, Zhang Xing 2006 IEEE Trans.on Electron Devices 53 2008

    [5]

    Xie Q, Xu Jnm, Yuan Taur 2012 IEEE Trans. Electron Devices 59 1569

    [6]

    Liu Z H, Hu C, Huang JH, Chan T Y, Jeng M C, Ko P K, Y C Cheng 1993 IEEE Trans. on Electron Devices 40 86

    [7]

    Qing S S, Zhang H M, Hu H Y, Qu J T, Wang G Y, Xiao Q 2011 Acta Phys. Sin. 60 058501 (in Chinese) [秦珊珊, 张鹤鸣, 胡辉勇, 屈江涛, 王冠宇, 肖庆, 舒珏 2011 物理学报 60 058501]

    [8]

    Baishya S, Allik A, Sarkar C K 2006 IEEE Trans.on Electron Devices 53 507

    [9]

    Xi X, Dunga M, He J, Liu W, Cao K M, Jin X, Ou J J, Chan M, Niknejad A M, Hu C 2004 BEIM 4.5.0 MOSFET MODEL (Berkeley: Dept. Elect. Eng. Comput. Sci. University of California)

    [10]

    Sheng J N, Ma Q S, Yuan B, Zheng Q H, Yan Z W 2006 Theory and Application of Electromagnetic Field and Wave by Semi-Analytical Method (Beijing: Science Press) p25 (in Chinese) [盛剑霓, 马齐爽, 袁斌, 郑勤红, 闫照文 2006 电磁场与波分析中半解析法的理论方法与应用 (北京: 科学出版社) 第25页]

    [11]

    Jayadeva G S, DasGupta A 2010 IEEE Trans. on Electron Devices 57 1820

    [12]

    Medici Version A User Guide 2007 Synopsys Company

    [13]

    Ratnakumar K, Meindl J 1982 IEEE Solid-State Circuits 17 937

    [14]

    Yu B, Lu H, Liu M, Taur Y 2007 IEEE Trans. on Electron Devices 54 2715

    [15]

    Xie Q, Xu J, Ren T, Taur Y 2010 Semicond. Sci. Technol. 25 035

    [16]

    Bi H S, Hai C S, Han Z S 2011 Acta Phys. Sin. 60 018501 (in Chinese) [毕津顺, 海潮和, 韩郑生 2011 物理学报 60 018501]

  • [1]

    Kasai R, Yokoyamak, Yoshiia A, Sudo T 1982 IEEE Trans. on Electron Devices 29 870

    [2]

    Hadji D, Marchal Y 1999 IEEE Trans. Magnetics 35 1809

    [3]

    Rios R, Mudanai S, Shih W K, Packan P 2004 IEDM Tech. Dig. 755

    [4]

    He Jin, Chan Mansun, Zhang Xing 2006 IEEE Trans.on Electron Devices 53 2008

    [5]

    Xie Q, Xu Jnm, Yuan Taur 2012 IEEE Trans. Electron Devices 59 1569

    [6]

    Liu Z H, Hu C, Huang JH, Chan T Y, Jeng M C, Ko P K, Y C Cheng 1993 IEEE Trans. on Electron Devices 40 86

    [7]

    Qing S S, Zhang H M, Hu H Y, Qu J T, Wang G Y, Xiao Q 2011 Acta Phys. Sin. 60 058501 (in Chinese) [秦珊珊, 张鹤鸣, 胡辉勇, 屈江涛, 王冠宇, 肖庆, 舒珏 2011 物理学报 60 058501]

    [8]

    Baishya S, Allik A, Sarkar C K 2006 IEEE Trans.on Electron Devices 53 507

    [9]

    Xi X, Dunga M, He J, Liu W, Cao K M, Jin X, Ou J J, Chan M, Niknejad A M, Hu C 2004 BEIM 4.5.0 MOSFET MODEL (Berkeley: Dept. Elect. Eng. Comput. Sci. University of California)

    [10]

    Sheng J N, Ma Q S, Yuan B, Zheng Q H, Yan Z W 2006 Theory and Application of Electromagnetic Field and Wave by Semi-Analytical Method (Beijing: Science Press) p25 (in Chinese) [盛剑霓, 马齐爽, 袁斌, 郑勤红, 闫照文 2006 电磁场与波分析中半解析法的理论方法与应用 (北京: 科学出版社) 第25页]

    [11]

    Jayadeva G S, DasGupta A 2010 IEEE Trans. on Electron Devices 57 1820

    [12]

    Medici Version A User Guide 2007 Synopsys Company

    [13]

    Ratnakumar K, Meindl J 1982 IEEE Solid-State Circuits 17 937

    [14]

    Yu B, Lu H, Liu M, Taur Y 2007 IEEE Trans. on Electron Devices 54 2715

    [15]

    Xie Q, Xu J, Ren T, Taur Y 2010 Semicond. Sci. Technol. 25 035

    [16]

    Bi H S, Hai C S, Han Z S 2011 Acta Phys. Sin. 60 018501 (in Chinese) [毕津顺, 海潮和, 韩郑生 2011 物理学报 60 018501]

  • [1] 周春宇, 张鹤鸣, 胡辉勇, 庄奕琪, 舒斌, 王斌, 王冠宇. 应变Si NMOSFET阈值电压集约物理模型. 物理学报, 2013, 62(7): 077103. doi: 10.7498/aps.62.077103
    [2] 黄苑, 徐静平, 汪礼胜, 朱述炎. 不同散射机理对 Al2O3/InxGa1-xAs nMOSFET 反型沟道电子迁移率的影响. 物理学报, 2013, 62(15): 157201. doi: 10.7498/aps.62.157201
    [3] 辛艳辉, 刘红侠, 范小娇, 卓青青. 单Halo全耗尽应变Si 绝缘硅金属氧化物半导体场效应管的阈值电压解析模型. 物理学报, 2013, 62(10): 108501. doi: 10.7498/aps.62.108501
    [4] 毕娟, 金光勇, 倪晓武, 张喜和, 姚志健. 532nm长脉冲激光致GaAs热分解损伤的半解析法分析. 物理学报, 2012, 61(24): 244209. doi: 10.7498/aps.61.244209
    [5] 李妤晨, 张鹤鸣, 张玉明, 胡辉勇, 徐小波, 秦珊珊, 王冠宇. 新型高速半导体器件IMOS阈值电压解析模型. 物理学报, 2012, 61(4): 047303. doi: 10.7498/aps.61.047303
    [6] 屈江涛, 张鹤鸣, 王冠宇, 王晓艳, 胡辉勇. 多晶SiGe栅量子阱pMOSFET阈值电压模型. 物理学报, 2011, 60(5): 058502. doi: 10.7498/aps.60.058502
    [7] 刘张李, 胡志远, 张正选, 邵华, 宁冰旭, 毕大炜, 陈明, 邹世昌. 0.18 m MOSFET器件的总剂量辐照效应. 物理学报, 2011, 60(11): 116103. doi: 10.7498/aps.60.116103
    [8] 王冠宇, 张鹤鸣, 王晓艳, 吴铁峰, 王斌. 亚100 nm应变Si/SiGe nMOSFET阈值电压二维解析模型. 物理学报, 2011, 60(7): 077106. doi: 10.7498/aps.60.077106
    [9] 张志锋, 张鹤鸣, 胡辉勇, 宣荣喜, 宋建军. 应变Si沟道nMOSFET阈值电压模型. 物理学报, 2009, 58(7): 4948-4952. doi: 10.7498/aps.58.4948
    [10] 汤晓燕, 张义门, 张玉明. SiC肖特基源漏MOSFET的阈值电压. 物理学报, 2009, 58(1): 494-497. doi: 10.7498/aps.58.494
    [11] 韩 亮, 赵玉清, 张海波. 非平衡磁控溅射系统磁场的半解析法. 物理学报, 2008, 57(2): 996-1000. doi: 10.7498/aps.57.996
    [12] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [13] 纪运景, 卞保民, 童朝霞, 陆 建. 靶材偏置低电压对激光等离子体诱导靶上电势信号的影响. 物理学报, 2008, 57(2): 980-984. doi: 10.7498/aps.57.980
    [14] 张鹤鸣, 崔晓英, 胡辉勇, 戴显英, 宣荣喜. 应变SiGe SOI量子阱沟道PMOSFET阈值电压模型研究. 物理学报, 2007, 56(6): 3504-3508. doi: 10.7498/aps.56.3504
    [15] 李艳萍, 徐静平, 陈卫兵, 许胜国, 季 峰. 考虑量子效应的短沟道MOSFET二维阈值电压模型. 物理学报, 2006, 55(7): 3670-3676. doi: 10.7498/aps.55.3670
    [16] 陈卫兵, 徐静平, 邹 晓, 李艳萍, 许胜国, 胡致富. 小尺寸MOSFET隧穿电流解析模型. 物理学报, 2006, 55(10): 5036-5040. doi: 10.7498/aps.55.5036
    [17] 包军林, 庄奕琪, 杜 磊, 李伟华, 万长兴, 张 萍. N/P沟道MOSFET1/f噪声的统一模型. 物理学报, 2005, 54(5): 2118-2122. doi: 10.7498/aps.54.2118
    [18] 代月花, 陈军宁, 柯导明, 孙家讹. 考虑量子化效应的MOSFET阈值电压解析模型. 物理学报, 2005, 54(2): 897-901. doi: 10.7498/aps.54.897
    [19] 王 源, 张义门, 张玉明, 汤晓燕. 6H-SiC肖特基源漏MOSFET的模拟仿真研究. 物理学报, 2003, 52(10): 2553-2557. doi: 10.7498/aps.52.2553
    [20] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究. 物理学报, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
计量
  • 文章访问数:  5261
  • PDF下载量:  533
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-14
  • 修回日期:  2012-12-07
  • 刊出日期:  2013-05-05

/

返回文章
返回