搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

深海大深度声场垂直相关特性

李整林 董凡辰 胡治国 吴双林

引用本文:
Citation:

深海大深度声场垂直相关特性

李整林, 董凡辰, 胡治国, 吴双林

Vertical correlations of sound field at large depths in deep water

Li Zheng-Lin, Dong Fan-Chen, Hu Zhi-Guo, Wu Shuang-Lin
PDF
HTML
导出引用
  • 深海声场垂直相关特性对提高垂直阵阵列增益和水下目标探测性能具有重要意义. 基于2014年南中国海实验大跨度垂直阵接收的声信号, 分析了深海直达区、影区和会聚区等不同距离下的大深度声场垂直相关特性, 并使用射线理论解释了深海垂直相关随空间变化机理. 在直达声区内, 声场垂直相关半径几乎可以覆盖整个水深, 且随着深度增加, 直达声和海面反射声到达时间差增加, 相关略有下降. 在声影区内, 声场能量主要来源为经一次海底反射和一到两次海面反射的声线, 垂直相关整体偏低. 第一会聚区内垂直相关系数随着接收深度的增加而周期性振荡, 并且与声能量在深度上的分布具有相似结构, 这是高声强区域两组反转声线在垂直方向上周期性干涉的结果.
    The research on the vertical correlation characteristics of sound field in deep water has important implications for enhancing the vertical array gain and improving the ability to detect the underwater target. Based on a deep-water experiment conducted in the South China Sea, the vertical coherence of sound fields in the direct zone, shadow zone and convergence zone are analyzed with the sound signals received by a vertical line array that covers the maximal depth to 1,866 m. The numerical analysis based on the ray theory is carried out to provide corresponding theoretical explanations to the variations of the vertical correlation characteristics at different ranges and depths. The vertical correlation coefficients in the direct zone are higher than 0.707 for the whole depth and drop very little with the increase of the vertical depth. It is because the main contributions come from direct arrival ray and sea surface reflection ray. The pulse structure is relatively simple, and the time delays of the two rays increase with the space between two receivers increasing. In the shadow zone, sound energy mainly comes from bottom reflection. Therefore, the vertical correlation coefficients are relatively low. Multi-path arrival is observed obviously. Vertical correlation coefficients drop quickly with depth increasing. With range increasing, the time delays of the multi-path pulses decrease. The vertical correlation coefficients at the same depth will increase a little with range increasing. Near the first convergence zone, vertical correlations oscillate periodically with the increase of vertical separation, and share the same distribution pattern with the sound energy along the vertical direction, which is caused by the periodical oscillation of two groups of the refracted rays from water volume. The refracted rays have the same amplitude, therefore, the time delays of the two group of rays increase with receiver depth increasing, and the phase of sound filed fluctuates in $The research on the vertical correlation characteristics of sound field in deep water has important implications for enhancing the vertical array gain and improving the ability to detect the underwater target. Based on a deep-water experiment conducted in the South China Sea, the vertical coherence of sound fields in the direct zone, shadow zone and convergence zone are analyzed with the sound signals received by a vertical line array that covers the maximal depth to 1,866 m. The numerical analysis based on the ray theory is carried out to provide corresponding theoretical explanations to the variations of the vertical correlation characteristics at different ranges and depths. The vertical correlation coefficients in the direct zone are higher than 0.707 for the whole depth and drop very little with the increase of the vertical depth. It is because the main contributions come from direct arrival ray and sea surface reflection ray. The pulse structure is relatively simple, and the time delays of the two rays increase with the space between two receivers increasing. In the shadow zone, sound energy mainly comes from bottom reflection. Therefore, the vertical correlation coefficients are relatively low. Multi-path arrival is observed obviously. Vertical correlation coefficients drop quickly with depth increasing. With range increasing, the time delays of the multi-path pulses decrease. The vertical correlation coefficients at the same depth will increase a little with range increasing. Near the first convergence zone, vertical correlations oscillate periodically with the increase of vertical separation, and share the same distribution pattern with the sound energy along the vertical direction, which is caused by the periodical oscillation of two groups of the refracted rays from water volume. The refracted rays have the same amplitude, therefore, the time delays of the two group of rays increase with receiver depth increasing, and the phase of sound filed fluctuates in $\left[ {0,2} {\text{π}}\right]$periodically. The periodicity causes the sound intensity and the vertical correlation coefficients to have the same oscillation structures. If the rays have the same phases, the main contribution comes from refraction rays, the structure of the pulses is relatively simple and causes vertical correlation to be higher. Otherwise, the main contribution comes from bottom reflected rays, the structure of the pulses is complex, and vertical correlation drops down. Corresponding Author: Li Zheng-lin $\end{document}periodically. The periodicity causes the sound intensity and the vertical correlation coefficients to have the same oscillation structures. If the rays have the same phases, the main contribution comes from refraction rays, the structure of the pulses is relatively simple and causes vertical correlation to be higher. Otherwise, the main contribution comes from bottom reflected rays, the structure of the pulses is complex, and vertical correlation drops down.
      通信作者: 李整林, lzhl@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11434012, 11874061)资助的课题.
      Corresponding author: Li Zheng-Lin, lzhl@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434012, 11874061).
    [1]

    周士弘, 张仁和, 陶晓东, 龚敏, 郝隆盛 1998 自然科学进展 8 342Google Scholar

    Zhou S H, Zhang R H, Tao X D, Gong M, Hao L S 1998 Progress in Natural Science 8 342Google Scholar

    [2]

    Guo L H, Gong Z X, Wu L X 2001 Chin. Phys. Lett. 18 1366Google Scholar

    [3]

    Li Z L, Zhang R H, Yan J, Li F H, Liu J J 2004 IEEE J. Oceanic Eng. 29 973Google Scholar

    [4]

    Wan L, Zhou J X, Rogers P H, Knobles D P 2009 Acoust. Phys. 55 383Google Scholar

    [5]

    赵梅, 胡长青 2010 声学技术 29 365Google Scholar

    Zhao M, Hu C Q 2010 Technical Acoustics 29 365Google Scholar

    [6]

    王鲁军, 彭朝晖, 李整林 2011 声学学报 36 596

    Wang L J, Peng C H, Li Z L 2011 Acta Acustica 36 596

    [7]

    张仁和, 张双荣, 肖金泉, 孙庚辰, 王孟新 1981 声学学报 1 9

    Zhang R H, Zhang S R, Xiao J Q, Sun G C, Wang M X 1981 Acta Acustica 1 9

    [8]

    Wang Q, Zhang R H 1992 J. Acoust. Soc. Am. 92 932Google Scholar

    [9]

    宫在晓 2001 博士学位论文(北京: 中国科学院声学研究所)

    Gong Z X 2001 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [10]

    Urick R J, Lund G R 1968 J. Acoust. Soc. Am. 43 723Google Scholar

    [11]

    Urick R J 1973 J. Acoust. Soc. Am. 54 115Google Scholar

    [12]

    Colosi J A, Chandrayadula T K, Voronovich A G, Ostashev V E 2013 J. Acoust. Soc. Am. 134 3119Google Scholar

    [13]

    Li J, Li Z L, Ren Y 2016 Chin. Phys. B 25 124310Google Scholar

    [14]

    李鋆 2017 博士学位论文(北京: 中国科学院声学研究所)

    Li J 2017 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [15]

    胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303Google Scholar

    [16]

    胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304

    Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Scientia Sinica Physica, Mechanica & Astronomica 46 094304

    [17]

    胡治国, 李整林, 张仁和, 任云, 李鋆 2016 声学学报 41 758

    Hu Z G, Li Z L, Zhang R H, Ren Y, Li J 2016 Acta Acustica 41 758

    [18]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068Google Scholar

    [19]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [20]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p147 p36

    [21]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 124301Google Scholar

    [22]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990Google Scholar

    [23]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [24]

    翁晋宝 2015 博士学位论文(北京: 中国科学院声学研究所)

    Weng J B 2015 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [25]

    张仁和, 李风华 1999 中国科学 A 29 241

    Zhang R H, Li F H 1999 Science in China (Series A) 29 241

    [26]

    翁晋宝, 李风华, 郭永刚 2015 声学学报 40 207

    Weng J B, Li F H, Guo Y G 2015 Acta Acustica 40 207

    [27]

    翁晋宝, 李风华, 郭永刚 2016 声学学报 41 330

    Weng J B, Li F H, Guo Y G 2016 Acta Acustica 41 330

  • 图 1  海上实验设备布放示意图

    Fig. 1.  The configuration of the experiment.

    图 2  拖曳换能器发射声信号的周期

    Fig. 2.  The cycle of the source signals from a towed transducer.

    图 3  O2到O1传播路径上海深随距离的变化

    Fig. 3.  The bathymetry along the propagation track from O2 to O1.

    图 4  实验期间的海水声速剖面

    Fig. 4.  Sound speed profile during the experiment.

    图 5  O2到O1 传播路径上二维声传播损失对比 (a)实验结果; (b) RAM模型计算结果

    Fig. 5.  TL along the propagation track from O2 to O1: (a) Experimental result; (b) numerical result.

    图 6  距离2.0 km处垂直阵声场垂直互相关 (a) 实验结果; (b) 模型结果

    Fig. 6.  The vertical cross-correlation of sound fields in the whole array at the range of 2.0 km: (a) Experimental results; (b) numerical results.

    图 7  距离2.0 km处声场垂直相关随间距的变化, 其中参考阵元深度102 m, 虚线为参考值0.707

    Fig. 7.  The vertical correlation coefficients at the range of 2.0 km for the reference depth at 102 m, where the dashed line representing the reference value 0.707.

    图 8  直达区内2.0 km距离处不同接收深度本征声线和时间到达结构 (a), (b) 167 m; (c), (d) 357 m; (e), (f) 1453 m

    Fig. 8.  Eigenrays and arrivals received at three different depths at the range of 2.0 km in the direct zone: (a), (b) 167 m; (c), (d) 357 m; (e), (f) 1453 m.

    图 9  直达区内2.0 km距离处不同接收深度多途到达结构比较 (a) 实验结果; (b) 模型结果

    Fig. 9.  Comparison of the experimental multipath structures on the vertical line array at the range of 2.0 km in the direct zone with numerical ones: (a) Experimental result; (b) numerical result.

    图 10  直达区内对声场起主要贡献的两条声线, 其中声源深度126 m, 接收深度1453 m

    Fig. 10.  The two main rays contributing to the sound field in the direct zone, where the source and receiver are at the depth of 126 and 1453 m, respectively.

    图 11  直达区内对声场起主要贡献的两条声线的初始掠射角及时间到达结构 (a) 声源处的掠射角; (b) 时间到达结构(声源深度126 m, 接收深度1453 m)

    Fig. 11.  The two main rays contributing to the sound field in the direct zone: (a) The grazing angles at source location; (b) the arrivals of the two rays (The source and receiver are at the depth of 126 and 1453 m, respectively).

    图 12  由射线模型计算的距离2.0 km处对声场起主要贡献的两条本征声线DR和SR的(a) 到达时间差和(b) 相位差随接收深度的变化

    Fig. 12.  Numerical travel time differences (a) and phase differences (b) of the two eigenrays (DR and SR) with the increase of the receiving depth at the range of 2.0 km from Bellhop model.

    图 13  由近似公式(12)式计算的垂直相关系数随着垂直间距变化与实验结果及RAM-PE模型结果的对比

    Fig. 13.  Comparison of the numerical vertical correlations computed by Eq. (12), with the experimental data and RAM-PE model results at the range of 2.0 km.

    图 14  距离4.2 km处垂直阵声场垂直互相关 (a) 实验结果; (b) 模型结果

    Fig. 14.  The vertical cross-correlation of sound fields in the whole array at the range of 4.2 km: (a) Experimental results; (b) numerical results.

    图 15  距离4.2 km处两个不同参考深度上声场垂直相关随间距的变化 (a) 参考深度102 m; (b) 参考深度357 m

    Fig. 15.  The vertical correlation coefficients at two different reference depths at the range of 4.2 km: (a) For reference depth 102 m; (b) for reference depth 357 m.

    图 16  直达区内4.2 km距离处不同接收深度的本征声线和时间到达结构 (a), (b) 167 m; (c), (d) 357 m; (e), (f) 1453 m

    Fig. 16.  Eigenrays and arrivals received at three different depths at the range of 4.2 km in the direct zone: (a), (b) 167 m; (c), (d) 357 m; (e), (f) 1453 m.

    图 17  直达区内4.2 km距离处垂直阵深度覆盖范围内的多途到达结构比较 (a) 实验结果; (b) 模型结果

    Fig. 17.  Comparison of the experimental multipath structures from the receivers on the vertical line array at the range of 4.2 km in the direct zone with numerical ones: (a) Experimental result; (b) Numerical result.

    图 18  距离13.6 km处垂直阵声场垂直互相关 (a) 实验结果; (b) 模型结果

    Fig. 18.  The vertical cross-correlation of sound fields in the whole array at the range of 13.6 km: (a) Experimental results; (b) numerical results.

    图 19  距离33.2 km处垂直阵声场垂直互相关 (a) 实验结果; (b) 模型结果

    Fig. 19.  The vertical cross-correlation of sound fields in the whole array at the range of 33.2 km: (a) Experimental results; (b) numerical results.

    图 20  第一影区内两个不同距离处声场垂直相关随间距的变化, 其中参考深度102 m, 接收距离分别为13.6 km 和33.2 km

    Fig. 20.  Comparison of the vertical correlation coefficients at two different ranges of 13.6 km and 33.2 km in the first shadow zone for the reference depth at 102 m.

    图 21  第一影区内接收深度865 m处不同收发距离的本征声线和时间到达结构 (a), (b) 13.6 km; (c), (d) 33.2 km

    Fig. 21.  Eigenrays and arrivals received at the depth of 865 m for two different ranges in the first shadow zone: (a), (b) 13.6 km; (c), (d) 33.2 km.

    图 22  第一影区内距离13.6 km处垂直阵深度覆盖范围内的多途到达结构比较 (a) 实验结果; (b) 模型结果

    Fig. 22.  Comparison of the experimental multipath structures from the receivers on the vertical line array at the range of 13.6 km in the first shadow zone with numerical ones: (a) Experimental result; (b) numerical result.

    图 23  第一影区内距离33.2 km处垂直阵深度覆盖范围内的多途到达结构比较 (a) 实验结果; (b) 模型结果

    Fig. 23.  Comparison of the experimental multipath structures from the receivers on the vertical line array at the range of 33.2 km in the first shadow zone with numerical ones: (a) Experimental result; (b) numerical result.

    图 24  距离50 km处垂直阵声场垂直互相关 (a) 实验结果; (b) 模型结果

    Fig. 24.  The vertical cross-correlation of sound fields in the whole array at the range of 50 km: (a) Experimental results; (b) numerical results.

    图 25  距离50 km处两个不同参考深度上声场垂直相关随间距的变化 (a) 参考深度102 m; (b) 参考深度634 m

    Fig. 25.  The vertical correlation coefficients at two different reference depths at the range of 50 km: (a) For reference depth 102 m; (b) for reference depth 634 m.

    图 26  第一会聚区附近(50−60 km)声传播损失比较 (a) 实验结果; (b) 模型结果

    Fig. 26.  TL results near the first convergence zone (50−60 km): (a) For experimental result; (b) for numerical result.

    图 27  距离50 km处归一化声强随接收深度变化的实验结果与仿真结果对比

    Fig. 27.  Comparison of the normalized experimental sound energy with numerical results at the range of 50 km.

    图 28  第一会聚区附近50 km距离处不同接收深度的本征声线和时间到达结构 (a), (b) 167 m; (c), (d) 836 m; (e), (f) 1453 m

    Fig. 28.  Eigenrays and arrivals at three different depths at the range of 50 km near the first convergence zone: (a), (b) 167 m; (c), (d) 836 m; (e), (f) 1453 m.

    图 29  第一会聚区附近距离50 km处垂直阵深度覆盖范围内的多途到达结构比较 (a) 实验结果; (b) 模型结果

    Fig. 29.  Comparison of the experimental multipath structures from the receivers on the vertical line array at the range of 50 km near the first convergence zone with numerical ones: (a) Experimental result; (b) numerical result.

    图 30  由射线模型计算的距离50 km处对声场起主要贡献的两组水体反转声线的到达时间差(a)和相位差随接收深度(b)的变化

    Fig. 30.  Numerical travel time differences (a) and phase differences (b) of the two groups of refraction eigenrays from water volume with the increase of the receiving depth at the range of 50 km from Bellhop model.

    图 31  由近似公式(18)式计算50 km处归一化声强随着接收深度变化与实验结果及RAM-PE模型结果的对比

    Fig. 31.  Comparison of the numerical sound intensities computed by Eq. (18) with the experimental data and RAM-PE model results at the range of 50 km.

    图 32  由近似公式(19)式计算得到的参考深度634 m时垂直相关系数随着接收深度的变化与实验结果及RAM-PE模型结果的对比

    Fig. 32.  Comparison of the numerical vertical correlations for the reference depth 634 m computed by Eq. (19) with the experimental data and RAM-PE model results at the range of 50 km.

    表 1  海底底质采样测量样品分析参数表

    Table 1.  Sediment parameters analyzed from core sampling.

    深度范围/cm实测声速/m·s–1湿密度/g·cm–3声衰减系数/dB·m–1孔隙度/%中值粒径/mm沉积物类型
    0–2815831.65137.0662.600.0053粘土质粉砂
    28–5515971.5674.0265.080.0274粉砂
    55–8016631.57118.8067.590.0287粉砂
    80–10516951.45127.5074.930.0127粘土质粉砂
    105–13016311.55108.9168.220.0157粉砂
    130–15515161.44104.8675.380.0062粘土质粉砂
    155–1801291.3766.7377.980.0059粘土质粉砂
    180–20515081.33127.4780.770.0052粘土质粉砂
    205–23015401.30111.8984.070.0046粘土质粉砂
    230–25015331.26121.3785.000.0050粘土质粉砂
    250–28015471.26159.4185.550.0057粘土质粉砂
    280–30515651.21255.7083.240.0045粘土质粉砂
    平均值15841.41126.1475.870.0106–-
    下载: 导出CSV
  • [1]

    周士弘, 张仁和, 陶晓东, 龚敏, 郝隆盛 1998 自然科学进展 8 342Google Scholar

    Zhou S H, Zhang R H, Tao X D, Gong M, Hao L S 1998 Progress in Natural Science 8 342Google Scholar

    [2]

    Guo L H, Gong Z X, Wu L X 2001 Chin. Phys. Lett. 18 1366Google Scholar

    [3]

    Li Z L, Zhang R H, Yan J, Li F H, Liu J J 2004 IEEE J. Oceanic Eng. 29 973Google Scholar

    [4]

    Wan L, Zhou J X, Rogers P H, Knobles D P 2009 Acoust. Phys. 55 383Google Scholar

    [5]

    赵梅, 胡长青 2010 声学技术 29 365Google Scholar

    Zhao M, Hu C Q 2010 Technical Acoustics 29 365Google Scholar

    [6]

    王鲁军, 彭朝晖, 李整林 2011 声学学报 36 596

    Wang L J, Peng C H, Li Z L 2011 Acta Acustica 36 596

    [7]

    张仁和, 张双荣, 肖金泉, 孙庚辰, 王孟新 1981 声学学报 1 9

    Zhang R H, Zhang S R, Xiao J Q, Sun G C, Wang M X 1981 Acta Acustica 1 9

    [8]

    Wang Q, Zhang R H 1992 J. Acoust. Soc. Am. 92 932Google Scholar

    [9]

    宫在晓 2001 博士学位论文(北京: 中国科学院声学研究所)

    Gong Z X 2001 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [10]

    Urick R J, Lund G R 1968 J. Acoust. Soc. Am. 43 723Google Scholar

    [11]

    Urick R J 1973 J. Acoust. Soc. Am. 54 115Google Scholar

    [12]

    Colosi J A, Chandrayadula T K, Voronovich A G, Ostashev V E 2013 J. Acoust. Soc. Am. 134 3119Google Scholar

    [13]

    Li J, Li Z L, Ren Y 2016 Chin. Phys. B 25 124310Google Scholar

    [14]

    李鋆 2017 博士学位论文(北京: 中国科学院声学研究所)

    Li J 2017 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [15]

    胡治国, 李整林, 张仁和, 任云, 秦继兴, 何利 2016 物理学报 65 014303Google Scholar

    Hu Z G, Li Z L, Zhang R H, Ren Y, Qin J X, He L 2016 Acta Phys. Sin. 65 014303Google Scholar

    [16]

    胡治国, 李整林, 秦继兴, 任云, 张仁和 2016 中国科学: 物理学 力学 天文学 46 094304

    Hu Z G, Li Z L, Qin J X, Ren Y, Zhang R H 2016 Scientia Sinica Physica, Mechanica & Astronomica 46 094304

    [17]

    胡治国, 李整林, 张仁和, 任云, 李鋆 2016 声学学报 41 758

    Hu Z G, Li Z L, Zhang R H, Ren Y, Li J 2016 Acta Acustica 41 758

    [18]

    Collins M D, Westwood E K 1991 J. Acoust. Soc. Am. 89 1068Google Scholar

    [19]

    Collins M D 1993 J. Acoust. Soc. Am. 93 1736Google Scholar

    [20]

    Jensen F B, Kuperman W A, Porter M B, Schmidt H 2011 Computational Ocean Acoustics (2nd Ed.) (New York: Springer) p147 p36

    [21]

    Wu S L, Li Z L, Qin J X 2015 Chin. Phys. Lett. 32 124301Google Scholar

    [22]

    Li Z L, Li F H 2010 Chin. J. Oceanol. Limnol. 28 990Google Scholar

    [23]

    Porter M B, Bucker H P 1987 J. Acoust. Soc. Am. 82 1349Google Scholar

    [24]

    翁晋宝 2015 博士学位论文(北京: 中国科学院声学研究所)

    Weng J B 2015 Ph. D. Dissertation (Beijing: The Institute of Acoustics of the Chinese Academy of Sciences) (in Chinese)

    [25]

    张仁和, 李风华 1999 中国科学 A 29 241

    Zhang R H, Li F H 1999 Science in China (Series A) 29 241

    [26]

    翁晋宝, 李风华, 郭永刚 2015 声学学报 40 207

    Weng J B, Li F H, Guo Y G 2015 Acta Acustica 40 207

    [27]

    翁晋宝, 李风华, 郭永刚 2016 声学学报 41 330

    Weng J B, Li F H, Guo Y G 2016 Acta Acustica 41 330

  • [1] 张海刚, 马志康, 龚李佳, 张明辉, 周建波. 声衍射相移对深海会聚区焦散结构的影响. 物理学报, 2022, 71(20): 204302. doi: 10.7498/aps.71.20220763
    [2] 李鑫鹏, 曹睿杰, 李铭, 郭各朴, 李禹志, 马青玉. 基于粒子群算法的超振荡超分辨聚焦声场设计. 物理学报, 2022, 71(20): 204304. doi: 10.7498/aps.71.20220898
    [3] 孙静静, 张磊, 甄胜来, 曹志刚, 张国生, 俞本立. 深海原位激光多普勒测速系统. 物理学报, 2021, 70(21): 214205. doi: 10.7498/aps.70.20210367
    [4] 时胜国, 高塬, 张昊阳, 杨博全. 基于单元辐射叠加法的结构声源声场重建方法. 物理学报, 2021, 70(13): 134301. doi: 10.7498/aps.70.20201971
    [5] 蒋光禹, 孙超, 李沁然. 涡旋对深海风成噪声垂直空间特性的影响. 物理学报, 2020, 69(14): 144301. doi: 10.7498/aps.69.20200059
    [6] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用研究. 物理学报, 2020, (): 004300. doi: 10.7498/aps.69.20191652
    [7] 韩志斌, 彭朝晖, 刘雄厚. 深海海底反射区声场角谱域分布结构分析及在声纳波束俯仰上的应用. 物理学报, 2020, 69(11): 114301. doi: 10.7498/aps.69.20201652
    [8] 王龙昊, 秦继兴, 傅德龙, 李整林, 刘建军, 翁晋宝. 深海大接收深度海底混响研究. 物理学报, 2019, 68(13): 134303. doi: 10.7498/aps.68.20181883
    [9] 蒋光禹, 孙超, 谢磊, 刘雄厚. 表面声道对深海风成噪声垂直空间特性的影响规律. 物理学报, 2019, 68(2): 024302. doi: 10.7498/aps.68.20181794
    [10] 周娅, 吴正茂, 樊利, 孙波, 何洋, 夏光琼. 基于椭圆偏振光注入垂直腔表面发射激光器的正交偏振模式单周期振荡产生两路光子微波. 物理学报, 2015, 64(20): 204203. doi: 10.7498/aps.64.204203
    [11] 葛曼玲, 魏孟佳, 师鹏飞, 陈营, 付晓璇, 郭宝强, 张惠娟. 低频振荡电位的能量和相位稳定性与偶极子电流活动相关性的仿真. 物理学报, 2015, 64(14): 148701. doi: 10.7498/aps.64.148701
    [12] 林旺生, 梁国龙, 王燕, 付进, 张光普. 运动目标辐射声场干涉结构映射域特征研究. 物理学报, 2014, 63(3): 034306. doi: 10.7498/aps.63.034306
    [13] 林旺生, 梁国龙, 付进, 张光普. 浅海矢量声场干涉结构形成机理及试验研究. 物理学报, 2013, 62(14): 144301. doi: 10.7498/aps.62.144301
    [14] 陈蓥, 付世晓, 许玉旺, 周青, 范迪夏. 均匀流中近壁面垂直流向振荡圆柱水动力特性研究. 物理学报, 2013, 62(6): 064701. doi: 10.7498/aps.62.064701
    [15] 余赟, 惠俊英, 陈阳, 惠娟, 殷敬伟. 基于时空滤波理论的低频声场干涉结构研究. 物理学报, 2012, 61(5): 054303. doi: 10.7498/aps.61.054303
    [16] 杨先清, 刘甫, 贾燕, 邓敏, 郭海萍, 唐刚. 垂直振动颗粒混合气体的振荡现象研究. 物理学报, 2010, 59(2): 1116-1122. doi: 10.7498/aps.59.1116
    [17] 李宝河, 黄 阀, 杨 涛, 冯 春, 翟中海, 朱逢吾. 垂直取向FePt/Ag纳米颗粒薄膜的结构和磁性. 物理学报, 2005, 54(8): 3867-3871. doi: 10.7498/aps.54.3867
    [18] 谢旭东, 王清月, 柴 路. 频域标定飞秒脉冲干涉自相关迹及钛宝石振荡器实时啁啾监测. 物理学报, 2005, 54(8): 3657-3660. doi: 10.7498/aps.54.3657
    [19] 蒋刚, 谢洪平, 谭明亮, 朱正和. 弱结合分子Kr-HF结构与相关效应. 物理学报, 2000, 49(4): 665-669. doi: 10.7498/aps.49.665
    [20] 许祯镛. 随机海洋声信道下的噪声场时空相关函数. 物理学报, 1976, 25(3): 246-253. doi: 10.7498/aps.25.246
计量
  • 文章访问数:  9933
  • PDF下载量:  157
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-01-24
  • 修回日期:  2019-04-28
  • 上网日期:  2019-07-01
  • 刊出日期:  2019-07-05

/

返回文章
返回