搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究

鹿文亮 娄淑琴 王鑫 申艳 盛新志

引用本文:
Citation:

基于太赫兹时域光谱技术的伪色彩太赫兹成像的实验研究

鹿文亮, 娄淑琴, 王鑫, 申艳, 盛新志

False-color terahertz imaging system based on terahertz time domain spectrocsopy

Lu Wen-Liang, Lou Shu-Qin, Wang Xin, Shen Yan, Sheng Xin-Zhi
PDF
导出引用
  • 提出了一种伪色彩太赫兹成像技术. 通过引入频域色彩区间积分, 建立了一套基于太赫兹时域光谱技术的伪色彩太赫兹成像系统, 实验分别研究了乳糖和对氨基苯甲酸两种不同白色化学粉末的伪色彩成像和灰度成像, 研究了不同颜色区间定义对伪色彩图像的影响, 讨论了利用不同频率信息成像系统所能达到的空间分辨率. 研究结果表明, 伪色彩成像技术可以将不同的物质信息同时成像在一张太赫兹图像中, 通过不同物质在太赫兹图像中呈现出的颜色差别来区分不同的物质及其分布. 克服了传统的太赫兹灰度成像技术中, 需要多张图像来区分不同的物质的问题, 提高了成像速度, 降低了筛选难度. 利用高频信息进行伪色彩成像, 可以将系统成像的空间分辨率提高到0.4 mm. 伪色彩成像方式可以更直观快捷地显示样品的基本属性, 对于实现太赫兹安检的初检和快速筛选具有重大的现实意义.
    Based on terahertz time domain spectroscopy, a false-color imaging system is demonstrated by experiments. Three frequency ranges are defined as color ranges for three primary colors (red, green and blue). The mixture of the spectral integral values in each color range presents the final color of each pixel on the false-color THz image. Since the absorption frequencies of different materials are different, the spectral integral values in defined ranges are different, leading to different color on the false-color THz image. The false-color THz images of two kinds of white powder which are lactose and 4-aminobenzonic acid are obtained from the imaging system with two different definitions of color ranges. From the first color range definition, the absorption frequency of lactose lies in the green range, so only the green light is absorbed, and the color of lactose is magenta. In the meanwhile, there are two absorption frequencies for 4-aminobenzonic acid lying in the green and blue ranges, so both green and blue light are absorbed, and the color of 4-aminobenzonic acid is red. They can be told easily by different colors on the false-color THz image. From the second color range definition, the colors of two kinds of powder are more different. Both false-color THz images can present the cuvette and two kinds of powder clearly. By comparing the THz imaging with grayscale images, false-color THz imaging can display different materials by different colors in one image, instead of the requirement of many grayscale images. It is no need to generate grayscale images at each frequency, making false-color THz imaging consume less time. The false-color imaging is clearer and more efficient, which is more suitable for recognition in a rapid security check. In the situation of complex materials, more false-color THz images can be generated by different color range definitions to assist the detection. The spatial resolution of the imaging system is also investigated. The resolution of imaging system is investigated by imaging home-made standard sample plate. For the frequency range that is higher than 0.3 THz, the resolution can reach 0.4 mm, which is larger than enough for most practical applications.
    • 基金项目: 国家自然科学基金(批准号:61475016,61177082)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475016 and 61177082).
    [1]

    Dragoman D, Dragoman M 2004 Prog. Quantum Electron. 28 1

    [2]

    Bradley F, Zhang X C 2003 Physics 32 286 (in Chinese)[Bradley F, 张希成2003 物理32 286]

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med.Biol. 47 3853

    [4]

    Kawase K, Ogawa Y, Watanabe Y, Inoue H 2003 Opt. Exp. 11 2549

    [5]

    Liu S J, Yu F, Li K, Zhou J 2013 Physics 42 788 (in Chinese) [刘尚建,余菲,李凯,周静 2013 物理 42 788]

    [6]

    Fukunaga K, Ogawa Y, Hayashi S, Hosako I 2007 IEICE ELECTRON EXP. 4 258

    [7]

    Siegel P H 2004 IEEE T MICROW. THEORY 52 2438

    [8]

    Kemp M C, Glauser A, Baker C 2007 International Journal of High. 17 403

    [9]

    Walther M, Plochocka P, Fischer B, Helm H, Jepsen P U 2002 Biopolymers 67 310

    [10]

    Li N, Shen J L, Sun J H, Liang L S, Xu X Y, Lu M H, Jia Y 2005 Opt. Exp. 13 6750

    [11]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C 2006 Phys. Lett. A 359 728

    [12]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [13]

    Exter M V, Fattinger C, Grischkowsky D 1989 Opt. Lett. 14 1128

    [14]

    Hu B, Nuss M 1995 Opt. Lett. 20 1716

    [15]

    Mittleman D M, Jacobsen R H, Nuss M C 1996 IEEE J Sel. Top. Quant. 2 679

    [16]

    Mittleman D M, Hunsche S, Boivin L, Nuss M C 1997 Opt. Lett. 22 904

    [17]

    Lu M, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J Appl. Phys. 100 103104

    [18]

    Zhang Z W, Zhang Y, Zhao G Z, Zhang C 2007 Optik 118 325

    [19]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [20]

    Palka N 2011 Acta Phys. Pol. A 120 713

  • [1]

    Dragoman D, Dragoman M 2004 Prog. Quantum Electron. 28 1

    [2]

    Bradley F, Zhang X C 2003 Physics 32 286 (in Chinese)[Bradley F, 张希成2003 物理32 286]

    [3]

    Woodward R M, Cole B E, Wallace V P, Pye R J, Arnone D D, Linfield E H, Pepper M 2002 Phys. Med.Biol. 47 3853

    [4]

    Kawase K, Ogawa Y, Watanabe Y, Inoue H 2003 Opt. Exp. 11 2549

    [5]

    Liu S J, Yu F, Li K, Zhou J 2013 Physics 42 788 (in Chinese) [刘尚建,余菲,李凯,周静 2013 物理 42 788]

    [6]

    Fukunaga K, Ogawa Y, Hayashi S, Hosako I 2007 IEICE ELECTRON EXP. 4 258

    [7]

    Siegel P H 2004 IEEE T MICROW. THEORY 52 2438

    [8]

    Kemp M C, Glauser A, Baker C 2007 International Journal of High. 17 403

    [9]

    Walther M, Plochocka P, Fischer B, Helm H, Jepsen P U 2002 Biopolymers 67 310

    [10]

    Li N, Shen J L, Sun J H, Liang L S, Xu X Y, Lu M H, Jia Y 2005 Opt. Exp. 13 6750

    [11]

    Hu Y, Huang P, Guo L T, Wang X H, Zhang C 2006 Phys. Lett. A 359 728

    [12]

    Federici J F, Schulkin B, Huang F, Gary D, Barat R, Oliveira F, Zimdars D 2005 Semicond. Sci. Technol. 20 S266

    [13]

    Exter M V, Fattinger C, Grischkowsky D 1989 Opt. Lett. 14 1128

    [14]

    Hu B, Nuss M 1995 Opt. Lett. 20 1716

    [15]

    Mittleman D M, Jacobsen R H, Nuss M C 1996 IEEE J Sel. Top. Quant. 2 679

    [16]

    Mittleman D M, Hunsche S, Boivin L, Nuss M C 1997 Opt. Lett. 22 904

    [17]

    Lu M, Shen J L, Li N, Zhang Y, Zhang C L, Liang L S, Xu X Y 2006 J Appl. Phys. 100 103104

    [18]

    Zhang Z W, Zhang Y, Zhao G Z, Zhang C 2007 Optik 118 325

    [19]

    Byrne M B, Cunningham J, Tych K, Burnett A D, Stringer M R, Wood C D, Dazhang L, Lachab M, Linfield E H, Davies A G 2008 Appl. Phys. Lett. 93 182904

    [20]

    Palka N 2011 Acta Phys. Pol. A 120 713

  • [1] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [2] 黄若彤, 李九生. 太赫兹多波束调控反射编码超表面. 物理学报, 2023, 72(5): 054203. doi: 10.7498/aps.72.20221962
    [3] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [4] 王志全, 施卫. 太赫兹时域光谱中脉冲太赫兹波全息探测. 物理学报, 2022, 71(18): 188704. doi: 10.7498/aps.71.20220983
    [5] 冯龙呈, 杜琛, 杨圣新, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健, 吴培亨. 太赫兹实时近场光谱成像研究. 物理学报, 2022, 71(16): 164201. doi: 10.7498/aps.71.20220131
    [6] 侯磊, 王俊喃, 王磊, 施卫. α-乳糖水溶液太赫兹吸收光谱实验研究及模拟分析. 物理学报, 2021, 70(24): 243202. doi: 10.7498/aps.70.20211716
    [7] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [8] 武丽敏, 徐德刚, 王与烨, 葛梅兰, 李海滨, 王泽龙, 姚建铨. 共光路连续太赫兹反射和衰减全反射成像. 物理学报, 2021, 70(11): 118701. doi: 10.7498/aps.70.20210182
    [9] 陈志文, 佘圳跃, 廖开宇, 黄巍, 颜辉, 朱诗亮. 基于Rydberg原子天线的太赫兹测量. 物理学报, 2021, 70(6): 060702. doi: 10.7498/aps.70.20201870
    [10] 姜伟, 赵欢, 汪国崔, 王新柯, 韩鹏, 孙文峰, 叶佳声, 冯胜飞, 张岩. 应用太赫兹焦平面成像方法研究氧化镁晶体在太赫兹波段的双折射特性. 物理学报, 2020, 69(20): 208702. doi: 10.7498/aps.69.20200766
    [11] 王大勇, 李兵, 戎路, 赵洁, 王云新, 翟长超. 连续太赫兹波双物距叠层定量相衬成像. 物理学报, 2020, 69(2): 028701. doi: 10.7498/aps.69.20191310
    [12] 张旭涛, 阙肖峰, 蔡禾, 孙金海, 张景, 李粮生, 刘永强. 太赫兹雷达散射截面的仿真与时域光谱测量. 物理学报, 2019, 68(16): 168701. doi: 10.7498/aps.68.20190552
    [13] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松. 小波变换在太赫兹三维成像探测内部缺陷中的应用. 物理学报, 2017, 66(8): 088701. doi: 10.7498/aps.66.088701
    [14] 黄海漩, 徐平, 阮双琛, 杨拓, 袁霞, 黄燕燕. 太赫兹偶数分束器设计与公差分析. 物理学报, 2015, 64(15): 154212. doi: 10.7498/aps.64.154212
    [15] 孙怡雯, 钟俊兰, 左剑, 张存林, 但果. 血凝素蛋白及抗体相互作用的太赫兹光谱主成分分析. 物理学报, 2015, 64(16): 168701. doi: 10.7498/aps.64.168701
    [16] 王卫宁. 苏氨酸的太赫兹及拉曼光谱研究. 物理学报, 2009, 58(11): 7640-7645. doi: 10.7498/aps.58.7640
    [17] 张显斌, 施 卫. 基于可调谐准高斯波束太赫兹源的成像系统研究. 物理学报, 2008, 57(8): 4984-4990. doi: 10.7498/aps.57.4984
    [18] 王卫宁, 李元波, 岳伟伟. 组氨酸和精氨酸的太赫兹光谱研究. 物理学报, 2007, 56(2): 781-785. doi: 10.7498/aps.56.781
    [19] 马士华, 施宇蕾, 徐新龙, 严 伟, 杨玉平, 汪 力. 用太赫兹时域光谱技术探测天冬酰胺的低频集体吸收频谱. 物理学报, 2006, 55(8): 4091-4095. doi: 10.7498/aps.55.4091
    [20] 岳伟伟, 王卫宁, 赵国忠, 张存林, 闫海涛. 芳香族氨基酸的太赫兹光谱研究. 物理学报, 2005, 54(7): 3094-3099. doi: 10.7498/aps.54.3094
计量
  • 文章访问数:  6171
  • PDF下载量:  630
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-20
  • 修回日期:  2014-12-10
  • 刊出日期:  2015-06-05

/

返回文章
返回