搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Pd基非晶合金动态弛豫机制和应力松弛行为

段亚娟 乔吉超

引用本文:
Citation:

Pd基非晶合金动态弛豫机制和应力松弛行为

段亚娟, 乔吉超

Dynamic relaxation characteristics and stress relaxation behavior of Pd-based metallic glass

Duan Ya-Juan, Qiao Ji-Chao
PDF
HTML
导出引用
  • 作为潜在的功能及结构材料, 高熵非晶合金在凝聚态物理和力学领域引起广泛的研究兴趣. 高熵非晶合金宏观力学性能与微观结构非均匀性之间的关联是当前重要的科学问题之一. 本文选取非晶形成能力良好的Pd42.5Cu30Ni7.5P20非晶合金和Pd20Pt20Cu20Ni20P20高熵非晶合金作为模型体系, 借助于动态弛豫行为及应力松弛实验建立了温度和物理时效对非晶合金高温变形机制与微观结构非均匀性之间的关联. 研究结果表明Pd基非晶合金表现出“肩膀峰”β弛豫形式. 玻璃转变温度以下物理时效非晶合金体系原子移动性导致β弛豫肩膀峰往更高的温度迁移. 在应力松弛过程中, 由于高构型熵的引入降低吉布斯自由能, 这是高熵非晶合金具有较高激活能的原因. 高熵非晶合金更难被激活, 需要突破更高的能量势垒. 物理时效时间增加, 高熵非晶合金流变单元更小, 这也得益于多主元高熵非晶合金慢扩散效应. 高熵非晶合金激活体积的改变在物理时效下应力松弛过程中的敏感性低于对应的非晶合金.
    As a potential functional and structural material, high-entropy metallic glasses have aroused tremendous research interest in condense matter physics and mechanics. The correlation between macroscopic mechanic properties and microstructure heterogeneity of high-entropy metallic glasses is one of the most important scientific issues in glassy solids. In the present research, Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass are selected as the model alloys. Dynamic mechanical analysis (DMA) and stress relaxation are used to investigate the influences of temperature and physical aging on dynamic mechanical relaxation process and microstructure heterogeneity of the model alloys. The dynamic mechanical analysis results demonstrate that the Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass both exhibit evident β relaxation process. In addition, the atomic mobility of model alloys is reduced in these processes, and the β relaxation shifts toward higher temperatures. In the stress relaxation process, the Gibbs free energy is reduced due to the high configurational entropy. This is the potential reason that high-entropy metallic glass possesses higher activation energy. In parallel, high-entropy metallic glass is more difficult to activate and needs to break through a higher energy barrier. With the increase of physical aging time, the flow unit in high-entropy metallic glass becomes smaller. This also benefits from the high-entropy effects that bring sluggish diffusion into high-entropy metallic glass. The change of activation volume under physical aging of high-entropy metallic glass is less sensitive to stress relaxation than that of metallic glass.
      通信作者: 乔吉超, qjczy@nwpu.edu.cn
    • 基金项目: 国家自然科学基金 (批准号: 51971178)、陕西省杰出青年基金(批准号: 2021JC-12)和西北工业大学博士论文创新基金(批准号: CX202031)资助的课题.
      Corresponding author: Qiao Ji-Chao, qjczy@nwpu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51971178), the Natural Science Basic Research Plan for Distinguished Young Scholars in Shaanxi Province, China (Grant No. 2021JC-12), and the Innovation Foundation for Doctoral Dissertation of Northwestern Polytechnical University, China (Grant No. CX202031).
    [1]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [2]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [3]

    Greer A L 1995 Science 267 1947Google Scholar

    [4]

    Li D M, Chen L S, Yu P, Ding D, Xia L 2020 Chin. Phys. Lett. 37 086401Google Scholar

    [5]

    Dong J, Feng Y, Huan Y, Yi J, Wang W, Bai H, Sun B A 2020 Chin. Phys. Lett. 37 017103Google Scholar

    [6]

    Wei S, Kim S J, Kang J, Zhang Y, Zhang Y, Furuhara T, Park E S, Tasan C C 2020 Nat. Mater. 19 1175Google Scholar

    [7]

    Miracle D B 2019 Nat. Commun. 10 1805Google Scholar

    [8]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [9]

    Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E 2019 Nat. Commun. 10 1Google Scholar

    [10]

    Zhang L T, Duan Y J, Daniel C, Eloi P, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. Chin. Phys. Mech. 64 296111Google Scholar

    [11]

    Zhang L T, Duan Y J, Wada T, Kato H, Pelletier J M, Crespo D, Pineda E, Qiao J C 2021 J. Mater. Sci. Technol. 83 248Google Scholar

    [12]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [13]

    Lyu G J, Qiao J C, Yao Y, Wang Y J, Morthomas J, Fusco C, Rodney D 2021 Acta Mater. 220 117293Google Scholar

    [14]

    Cheng Y T, Hao Q, Pelletier J M, Pineda E, Qiao J C 2021 Int. J. Plast. 146 103107Google Scholar

    [15]

    Amini N, Yang F, Pineda E, Ruta B, Sprung M, Meyer A 2021 Phys. Rev. Mater. 5 055601Google Scholar

    [16]

    Soriano D, Zhou H, Hilke S, Pineda E, Ruta B, Wilde G 2021 J. Phys. Condens. Matter 33 164004Google Scholar

    [17]

    Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B 2018 Acta Mater. 144 400Google Scholar

    [18]

    张浪渟, 乔吉超. 2021 中国科学: 物理学 力学 天文学 51 086111

    Zhang L T, Qiao J C 2021 Sci. China. Phys. Mech. 51 086111

    [19]

    Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002Google Scholar

    [20]

    Ketkaew J, Chen W, Wang H, Datye A, Fan M, Pereira G, Schwarz U D, Liu Z, Yamada R, Dmowski W, Shattuck M D, O’Hern C S, Egami T, Bouchbinder E, Schroers J 2018 Nat. Commun. 9 3271Google Scholar

    [21]

    Duan Y J, Yang D S, Qiao J C, Crespo D, Pelletier J M, Li L, Gao K, Zhang T 2020 Intermetallics 124 106846Google Scholar

    [22]

    Cao Q, Huang D, Yang J, Wang F 2020 Chin. Phys. Lett. 37 076201Google Scholar

    [23]

    Zhang S, Wang W, Guan P 2021 Chin. Phys. Lett. 38 016802Google Scholar

    [24]

    Cangialosi D, Boucher V M, Alegría A, Colmenero J 2013 Soft Matter 9 8619Google Scholar

    [25]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260Google Scholar

    [26]

    Ramamurty U, Lee M L, Basu J, Li Y 2002 Scr. Mater. 47 107Google Scholar

    [27]

    Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1

    [28]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [29]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [30]

    Yang M, Liu X J, Wu Y, Wang H, Jiang S H, Wang X Z, Lu Z P 2020 Sci. Chin. Phys. Mech. 50 067003

    [31]

    Wang W H 2014 JOM 66 2067Google Scholar

    [32]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546Google Scholar

    [33]

    Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495Google Scholar

    [34]

    Li Y, Wang S, Wang X, Yin M, Zhang W 2020 J. Mater. Sci. Technol. 43 32Google Scholar

    [35]

    Jalali A, Malekan M, Park E S, Rashidi R, Bahmani A, Yoo G H 2022 J. Alloys Compd. 892 162220Google Scholar

    [36]

    Yang M, Liu X, Ruan H, Wu Y, Wang H, Lu Z 2016 J. Appl. Phys. 119 245112Google Scholar

    [37]

    Zhang L, Duan Y, Crespo D, Pineda E, Wada T, Kato H, Pelletier J M, Qiao J 2021 Appl. Phys. Lett. 119 051905Google Scholar

    [38]

    Duan Y J, Qiao J C, Wada T, Kato H, Wang Y J, Pineda E, Crespo D 2021 Scr. Mater. 194 113675Google Scholar

    [39]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar

    [40]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar

    [41]

    Lu Z, Shang B S, Sun Y T, Zhu Z G, Guan P F, Wang W H, Bai H Y 2016 J. Chem. Phys. 144 144501Google Scholar

    [42]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011Google Scholar

    [43]

    Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar

    [44]

    Khonik V A 2017 Chin. Phys. B 26 16401Google Scholar

    [45]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [46]

    Wang Z, Sun B, Bai H, Wang W 2014 Nat. Commun. 5 5823Google Scholar

    [47]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99Google Scholar

    [48]

    Zhao L Z, Li Y Z, Xue R J, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 154904Google Scholar

    [49]

    Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502Google Scholar

    [50]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [51]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [52]

    Pei C, Zhao R, Fang Y, Wu S, Cui Z, Sun B, Lan S, Luo P, Wang W, Feng T 2020 J. Alloys Compd. 836 155506Google Scholar

    [53]

    Lu Z, Wang W H, Bai H Y 2015 Sci. Chin. Mater. 58 98Google Scholar

    [54]

    Lau T T, Kushima A, Yip S 2010 Phys. Rev. Lett. 104 175501Google Scholar

    [55]

    Jiao W, Wen P, Peng H, Bai H, Sun B, Wang W 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [56]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [57]

    Busch R, Schroers J, Wang W 2007 MRS Bull. 32 620Google Scholar

    [58]

    Douglas J F, Dudowicz J, Freed K F 2006 J. Chem. Phys. 125 144907Google Scholar

    [59]

    Jing J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 1Google Scholar

    [60]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [61]

    Caillard D, Martin J L 2003 Thermally Activated Mechanisms in Crystal Plasticity (Elsevier)

    [62]

    Liang D, Wang X, Ge K, Cao Q, Jiang J 2014 J. Non·Cryst. Solids 383 97

    [63]

    Tong Y, Qiao J C, Zhang C, Pelletier J M, Yao Y 2016 J. Non·Cryst. Solids 452 57

    [64]

    Gibbs M, Evetts J, Leake J 1983 J. Mater. Sci. 18 278Google Scholar

  • 图 1  Pd42.5Cu30Ni7.5P20非晶合金和Pd20Pt20Cu20Ni20P20高熵非晶合金DSC曲线(升温速率为20 K/min). 玻璃转变温度$ {T_{\text{g}}} $和晶化温度$ {T_{\text{x}}} $如图中箭头所示

    Fig. 1.  DSC curves of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass with a heating rate of 20 K/min. The glass transition temperature $ {T_{\text{g}}} $ and the onset crystallization temperature $ {T_{\text{x}}} $ are shown by the arrows.

    图 2  (a) Pd42.5Cu30Ni7.5P20非晶合金和 (b) Pd20Pt20Cu20Ni20P20高熵非晶合金铸态[38]时效后归一化损耗模量${E''}/E_{\max }''$随归一化温度$ T/{T_\alpha } $的演化($E_{\max }''$为两种模型合金损耗模量最大值, $ {T_\alpha } $为两种模型合金α弛豫的峰值温度), 升温速率为 3 K/min, 加载频率为3 Hz. 物理时效温度为0.824$ {T_{\text{g}}} $

    Fig. 2.  Evolution of the normalized loss modulus ${E''}/E_{\max }''$of (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass [38] as a function of normalized temperature $ T/{T_\alpha } $ with the state of as-cast and pre-aging (aging temperature is 0.824$ {T_{\text{g}}} $). The driving frequency is 3 Hz, the heating rate is 3 K/min and $ {T_\alpha } $ is the peak temperature of α relaxation.

    图 3  (a) Pd42.5Cu30Ni7.5P20非晶合金和(b) Pd20Pt20Cu20Ni20P20高熵非晶合金在不同温度下(0.8$ {T_{\text{g}}} $—0.9$ {T_{\text{g}}} $)的应力松弛行为, 应力通过初始应力进行归一化, 实线是KWW方程拟合曲线

    Fig. 3.  Stress relaxation spectra of (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass at different temperatures. KWW fittings are shown with solid lines.

    图 4  Pd42.5Cu30Ni7.5P20非晶合金和Pd20Pt20Cu20Ni20P20高熵非晶合金拟合参数 (a) $ {\beta _{{\text{KWW}}}} $, (b) $ n $随温度的演化

    Fig. 4.  Fitting parameters (a) $ {\beta _{{\text{KWW}}}} $, (b) $ n $ of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass as a function of temperature.

    图 5  Pd42.5Cu30Ni7.5P20非晶合金和Pd20Pt20Cu20Ni20P20高熵非晶合金应力松弛弛豫时间$ {\tau _{\text{c}}} $随温度的演化. 直线为基于Arrhenius公式拟合

    Fig. 5.  Dependence of the characteristic stress relaxation time $ {\tau _{\text{c}}} $ on the reciprocal stress relaxation temperature Tg/T of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass. The solid lines are the fittings with Arrhenius equation.

    图 6  (a) Pd42.5Cu30Ni7.5P20非晶合金和 (b) Pd20Pt20Cu20Ni20P20高熵非晶合金在0.824$ {T_{\text{g}}} $时效1800, 3600, 7200, 10800 s后的应力松弛谱及拟合曲线

    Fig. 6.  Stress relaxation and the corresponding fitting curves for (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass after different aging time (1800, 3600, 7200, 10800 s) at 0.824$ {T_{\text{g}}} $.

    图 7  Pd42.5Cu30Ni7.5P20非晶合金和 Pd20Pt20Cu20Ni20P20高熵非晶合金拟合参数 (a) $ n $, (b) $ {V_{\text{a}}} $, (c) $ {C_{\text{r}}} $随物理时效时间的演化

    Fig. 7.  The fitting parameters (a) $ n $, (b) $ {V_{\text{a}}} $, (c) $ {C_{\text{r}}} $of Pd42.5Cu30Ni7.5P20 metallic glass and Pd20Pt20Cu20Ni20P20 high-entropy metallic glass as a function of aging time.

    图 8  (a) Pd42.5Cu30Ni7.5P20非晶合金和 (b) Pd20Pt20Cu20Ni20P20高熵非晶合金激活能谱随时效时间的演化

    Fig. 8.  Evolution of activation energy spectrum of (a) Pd42.5Cu30Ni7.5P20 metallic glass and (b) Pd20Pt20Cu20Ni20P20 high-entropy metallic glass with different aging time.

  • [1]

    Wang W H 2019 Prog. Mater. Sci. 106 100561Google Scholar

    [2]

    Qiao J C, Wang Q, Pelletier J M, Kato H, Casalini R, Crespo D, Pineda E, Yao Y, Yang Y 2019 Prog. Mater. Sci. 104 250Google Scholar

    [3]

    Greer A L 1995 Science 267 1947Google Scholar

    [4]

    Li D M, Chen L S, Yu P, Ding D, Xia L 2020 Chin. Phys. Lett. 37 086401Google Scholar

    [5]

    Dong J, Feng Y, Huan Y, Yi J, Wang W, Bai H, Sun B A 2020 Chin. Phys. Lett. 37 017103Google Scholar

    [6]

    Wei S, Kim S J, Kang J, Zhang Y, Zhang Y, Furuhara T, Park E S, Tasan C C 2020 Nat. Mater. 19 1175Google Scholar

    [7]

    Miracle D B 2019 Nat. Commun. 10 1805Google Scholar

    [8]

    George E P, Raabe D, Ritchie R O 2019 Nat. Rev. Mater. 4 515Google Scholar

    [9]

    Glasscott M W, Pendergast A D, Goines S, Bishop A R, Hoang A T, Renault C, Dick J E 2019 Nat. Commun. 10 1Google Scholar

    [10]

    Zhang L T, Duan Y J, Daniel C, Eloi P, Wang Y J, Pelletier J M, Qiao J C 2021 Sci. Chin. Phys. Mech. 64 296111Google Scholar

    [11]

    Zhang L T, Duan Y J, Wada T, Kato H, Pelletier J M, Crespo D, Pineda E, Qiao J C 2021 J. Mater. Sci. Technol. 83 248Google Scholar

    [12]

    Zhu F, Song S, Reddy K M, Hirata A, Chen M 2018 Nat. Commun. 9 3965Google Scholar

    [13]

    Lyu G J, Qiao J C, Yao Y, Wang Y J, Morthomas J, Fusco C, Rodney D 2021 Acta Mater. 220 117293Google Scholar

    [14]

    Cheng Y T, Hao Q, Pelletier J M, Pineda E, Qiao J C 2021 Int. J. Plast. 146 103107Google Scholar

    [15]

    Amini N, Yang F, Pineda E, Ruta B, Sprung M, Meyer A 2021 Phys. Rev. Mater. 5 055601Google Scholar

    [16]

    Soriano D, Zhou H, Hilke S, Pineda E, Ruta B, Wilde G 2021 J. Phys. Condens. Matter 33 164004Google Scholar

    [17]

    Gallino I, Cangialosi D, Evenson Z, Schmitt L, Hechler S, Stolpe M, Ruta B 2018 Acta Mater. 144 400Google Scholar

    [18]

    张浪渟, 乔吉超. 2021 中国科学: 物理学 力学 天文学 51 086111

    Zhang L T, Qiao J C 2021 Sci. China. Phys. Mech. 51 086111

    [19]

    Ruta B, Pineda E, Evenson Z 2017 J. Phys. Condens. Matter 29 503002Google Scholar

    [20]

    Ketkaew J, Chen W, Wang H, Datye A, Fan M, Pereira G, Schwarz U D, Liu Z, Yamada R, Dmowski W, Shattuck M D, O’Hern C S, Egami T, Bouchbinder E, Schroers J 2018 Nat. Commun. 9 3271Google Scholar

    [21]

    Duan Y J, Yang D S, Qiao J C, Crespo D, Pelletier J M, Li L, Gao K, Zhang T 2020 Intermetallics 124 106846Google Scholar

    [22]

    Cao Q, Huang D, Yang J, Wang F 2020 Chin. Phys. Lett. 37 076201Google Scholar

    [23]

    Zhang S, Wang W, Guan P 2021 Chin. Phys. Lett. 38 016802Google Scholar

    [24]

    Cangialosi D, Boucher V M, Alegría A, Colmenero J 2013 Soft Matter 9 8619Google Scholar

    [25]

    Yang Y, Zeng J F, Volland A, Blandin J J, Gravier S, Liu C T 2012 Acta Mater. 60 5260Google Scholar

    [26]

    Ramamurty U, Lee M L, Basu J, Li Y 2002 Scr. Mater. 47 107Google Scholar

    [27]

    Zhu F, Nguyen H, Song S, Aji D P, Hirata A, Wang H, Nakajima K, Chen M 2016 Nat. Commun. 7 1

    [28]

    Yeh J W, Chen S K, Lin S J, Gan J Y, Chin T S, Shun T T, Tsau C H, Chang S Y 2004 Adv. Eng. Mater. 6 299Google Scholar

    [29]

    Zhang Y, Zuo T T, Tang Z, Gao M C, Dahmen K A, Liaw P K, Lu Z P 2014 Prog. Mater. Sci. 61 1Google Scholar

    [30]

    Yang M, Liu X J, Wu Y, Wang H, Jiang S H, Wang X Z, Lu Z P 2020 Sci. Chin. Phys. Mech. 50 067003

    [31]

    Wang W H 2014 JOM 66 2067Google Scholar

    [32]

    Takeuchi A, Chen N, Wada T, Yokoyama Y, Kato H, Inoue A, Yeh J W 2011 Intermetallics 19 1546Google Scholar

    [33]

    Yang M, Liu X J, Wu Y, Wang H, Wang X Z, Lu Z P 2018 Mater. Res. Lett. 6 495Google Scholar

    [34]

    Li Y, Wang S, Wang X, Yin M, Zhang W 2020 J. Mater. Sci. Technol. 43 32Google Scholar

    [35]

    Jalali A, Malekan M, Park E S, Rashidi R, Bahmani A, Yoo G H 2022 J. Alloys Compd. 892 162220Google Scholar

    [36]

    Yang M, Liu X, Ruan H, Wu Y, Wang H, Lu Z 2016 J. Appl. Phys. 119 245112Google Scholar

    [37]

    Zhang L, Duan Y, Crespo D, Pineda E, Wada T, Kato H, Pelletier J M, Qiao J 2021 Appl. Phys. Lett. 119 051905Google Scholar

    [38]

    Duan Y J, Qiao J C, Wada T, Kato H, Wang Y J, Pineda E, Crespo D 2021 Scr. Mater. 194 113675Google Scholar

    [39]

    Yu H B, Wang W H, Samwer K 2013 Mater. Today 16 183Google Scholar

    [40]

    Yu H B, Samwer K, Wu Y, Wang W H 2012 Phys. Rev. Lett. 109 095508Google Scholar

    [41]

    Lu Z, Shang B S, Sun Y T, Zhu Z G, Guan P F, Wang W H, Bai H Y 2016 J. Chem. Phys. 144 144501Google Scholar

    [42]

    Huang R, Suo Z, Prevost J H, Nix W D 2002 J. Mech. Phys. Solids 50 1011Google Scholar

    [43]

    Gauthier C, David L, Ladouce L, Quinson R, Perez J 1997 J. Appl. Polym. Sci. 65 2517Google Scholar

    [44]

    Khonik V A 2017 Chin. Phys. B 26 16401Google Scholar

    [45]

    王峥, 汪卫华 2017 物理学报 66 176103Google Scholar

    Wang Z, Wang W H 2017 Acta Phys. Sin. 66 176103Google Scholar

    [46]

    Wang Z, Sun B, Bai H, Wang W 2014 Nat. Commun. 5 5823Google Scholar

    [47]

    Ediger M D 2000 Annu. Rev. Phys. Chem. 51 99Google Scholar

    [48]

    Zhao L Z, Li Y Z, Xue R J, Wang W H, Bai H Y 2015 J. Appl. Phys. 118 154904Google Scholar

    [49]

    Harmon J S, Demetriou M D, Johnson W L, Samwer K 2007 Phys. Rev. Lett. 99 135502Google Scholar

    [50]

    Lu Z, Jiao W, Wang W H, Bai H Y 2014 Phys. Rev. Lett. 113 045501Google Scholar

    [51]

    汪卫华 2013 物理学进展 33 177

    Wang W H 2013 Prog. Phys. 33 177

    [52]

    Pei C, Zhao R, Fang Y, Wu S, Cui Z, Sun B, Lan S, Luo P, Wang W, Feng T 2020 J. Alloys Compd. 836 155506Google Scholar

    [53]

    Lu Z, Wang W H, Bai H Y 2015 Sci. Chin. Mater. 58 98Google Scholar

    [54]

    Lau T T, Kushima A, Yip S 2010 Phys. Rev. Lett. 104 175501Google Scholar

    [55]

    Jiao W, Wen P, Peng H, Bai H, Sun B, Wang W 2013 Appl. Phys. Lett. 102 101903Google Scholar

    [56]

    Spaepen F 1977 Acta Metall. 25 407Google Scholar

    [57]

    Busch R, Schroers J, Wang W 2007 MRS Bull. 32 620Google Scholar

    [58]

    Douglas J F, Dudowicz J, Freed K F 2006 J. Chem. Phys. 125 144907Google Scholar

    [59]

    Jing J, Lu Z, Shen J, Wada T, Kato H, Chen M 2021 Nat. Commun. 12 1Google Scholar

    [60]

    Tao K, Qiao J C, He Q F, Song K K, Yang Y 2021 Int. J. Mech. Sci. 201 106469Google Scholar

    [61]

    Caillard D, Martin J L 2003 Thermally Activated Mechanisms in Crystal Plasticity (Elsevier)

    [62]

    Liang D, Wang X, Ge K, Cao Q, Jiang J 2014 J. Non·Cryst. Solids 383 97

    [63]

    Tong Y, Qiao J C, Zhang C, Pelletier J M, Yao Y 2016 J. Non·Cryst. Solids 452 57

    [64]

    Gibbs M, Evetts J, Leake J 1983 J. Mater. Sci. 18 278Google Scholar

  • [1] 张婧祺, 郝奇, 吕国建, 熊必金, 乔吉超. 基于微观结构非均匀性理解非晶态聚苯乙烯的应力松弛行为. 物理学报, 2024, 73(3): 037601. doi: 10.7498/aps.73.20231240
    [2] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2023, 0(0): 0-0. doi: 10.7498/aps.72.20221621
    [3] 王凯乐, 杨文奎, 史新成, 侯华, 赵宇宏. 相场法研究AlxCuMnNiFe高熵合金富Cu相析出机理. 物理学报, 2023, 72(7): 076102. doi: 10.7498/aps.72.20222439
    [4] 黄蓓蓓, 郝奇, 吕国建, 乔吉超. 锆基非晶合金的动态弛豫和应力松弛. 物理学报, 2023, 72(13): 136101. doi: 10.7498/aps.72.20230181
    [5] 闻鹏, 陶钢. 温度对CoCrFeMnNi高熵合金冲击响应和塑性变形机制影响的分子动力学研究. 物理学报, 2022, 71(24): 246101. doi: 10.7498/aps.71.20221621
    [6] 陈晶晶, 邱小林, 李柯, 周丹, 袁军军. 纳米晶CoNiCrFeMn高熵合金力学性能的原子尺度分析. 物理学报, 2022, 71(19): 199601. doi: 10.7498/aps.71.20220733
    [7] 安敏荣, 李思澜, 宿梦嘉, 邓琼, 宋海洋. 尺寸依赖的CoCrFeNiMn晶体/非晶双相高熵合金塑性变形机制的分子动力学模拟. 物理学报, 2022, 71(24): 243101. doi: 10.7498/aps.71.20221368
    [8] 申天展, 宋海洋, 安敏荣. 孪晶界对Cr26Mn20Fe20Co20Ni14高熵合金力学行为影响的分子动力学模拟. 物理学报, 2021, 70(18): 186201. doi: 10.7498/aps.70.20210324
    [9] 黄文军, 乔珺威, 陈顺华, 王雪姣, 吴玉程. 含钨难熔高熵合金的制备、结构与性能. 物理学报, 2021, 70(10): 106201. doi: 10.7498/aps.70.20201986
    [10] 任县利, 张伟伟, 伍晓勇, 吴璐, 王月霞. 高熵合金短程有序现象的预测及其对结构的电子、磁性、力学性质的影响. 物理学报, 2020, 69(4): 046102. doi: 10.7498/aps.69.20191671
    [11] 王浩玉, 农智升, 王继杰, 朱景川. AlxCrFeNiTi系高熵合金成分和弹性性质关系. 物理学报, 2019, 68(3): 036101. doi: 10.7498/aps.68.20181893
    [12] 卞西磊, 王刚. 非晶合金的离子辐照效应. 物理学报, 2017, 66(17): 178101. doi: 10.7498/aps.66.178101
    [13] 李蕊轩, 张勇. 熵在非晶材料合成中的作用. 物理学报, 2017, 66(17): 177101. doi: 10.7498/aps.66.177101
    [14] 李江城, 梅冬成. 集合种群的延时效应. 物理学报, 2008, 57(11): 6792-6798. doi: 10.7498/aps.57.6792
    [15] 张建华, 张青松. 高自旋场对Vaidya-Bonner黑洞熵的贡献. 物理学报, 2005, 54(11): 5500-5503. doi: 10.7498/aps.54.5500
    [16] 苏九清, 李传安. 高自旋场对静态球对称黑洞熵的贡献. 物理学报, 2005, 54(2): 530-533. doi: 10.7498/aps.54.530
    [17] 赵鹤云, 阚家德, 柳清菊, 刘佐权. 几种铁基非晶合金激波诱导晶化中的若干奇异物理效应研究. 物理学报, 2005, 54(4): 1711-1718. doi: 10.7498/aps.54.1711
    [18] 王治, 何开元. Fe-Ni-Si-B非晶合金磁导率的等温时效. 物理学报, 1992, 41(10): 1694-1699. doi: 10.7498/aps.41.1694
    [19] 周敏耀. 高维宇宙中标量粒子的非热分布和总熵的增加. 物理学报, 1987, 36(9): 1224-1229. doi: 10.7498/aps.36.1224
    [20] 夏日源. 高剂量离子注入形成的非晶层重新结晶过程中杂质外扩散的物理模型. 物理学报, 1980, 29(5): 566-576. doi: 10.7498/aps.29.566
计量
  • 文章访问数:  3602
  • PDF下载量:  125
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-01
  • 修回日期:  2021-11-29
  • 上网日期:  2022-01-26
  • 刊出日期:  2022-04-20

/

返回文章
返回