搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

γ'-Fe4N软磁复合材料的磁性及损耗特性

王文彪 吴鹏 乔亮 吴伟 涂成发 杨晟宇 李发伸

引用本文:
Citation:

γ'-Fe4N软磁复合材料的磁性及损耗特性

王文彪, 吴鹏, 乔亮, 吴伟, 涂成发, 杨晟宇, 李发伸

Magnetic and loss characteristics of γ'-Fe4N soft magnetic composites

Wang Wen-Biao, Wu Peng, Qiao Liang, Wu Wei, Tu Cheng-Fa, Yang Sheng-Yu, Li Fa-Shen
PDF
HTML
导出引用
  • 软磁复合材料在光伏逆变器、新能源汽车及充电桩等新兴电力电子行业的应用前景广阔. 目前研究者们聚焦于开发新型软磁复合材料, 达到匹配以SiC和GaN为主的第3代高频宽禁带半导体的目标. 本文利用氨气氮化羰基铁粉制备得到高电阻率的γ'-Fe4N, 并证实其具备优异的软磁性能, 对γ'-Fe4N进行球磨处理使其成为静磁易面γ'-Fe4N粉体, 所获得的易面粉体与聚氨酯(PU)混合制成软磁复合材料. 与未球磨静磁易面化处理的非易面γ'-Fe4N复合材料相比, 静磁易面γ'-Fe4N软磁复合材料具有更高的磁导率, 更低的功率损耗. 与同类软磁复合材料相比, 通过氮化工艺降低磁性铁颗粒内涡流效应, 静磁易面γ'-Fe4N软磁复合材料具有优异的高频软磁性能. 静磁易面γ'-Fe4N为软磁复合材料匹配第3代宽禁带半导体的高频应用提供了一种新思路.
    Soft magnetic composite materials are prepared by mixing magnetic materials and insulating materials, which possess both the excellent magnetism of magnetic materials and the low resistivity of insulating materials. They possess broad application prospects in emerging power electronics industries such as photovoltaic inverters, new energy vehicles, and charging stations. The third-generation high-frequency wide bandgap semiconductors, mainly composed of SiC and GaN, have the operating frequency of soft magnetic materials raised to MHz. However, current soft magnetic materials have significant core losses at high frequencies. Therefore, people are focus their attention on developing new soft magnetic composite materials to reduce iron core losses at high frequencies. In this paper, γ'-Fe4N with high resistivity is prepared by nitriding carbonyl iron powders, showing its excellent soft magnetic properties, and the γ'-Fe4N is ball-milled to become easy plane γ'-Fe4N powder. Compared with the none easy plane γ'-Fe4N powders, the none easy plane γ'-Fe4N powders are spherical in shape, the easy plane γ'-Fe4N powders exhibit a high aspect to thickness ratio in sheet shape. The obtained easy plane powders are mixed with polyurethane insulation to make the soft magnetic composite. There is a significant difference between the in-plane and out-of-plane hysteresis loop of the magnetostatic easy plane γ'-Fe4N soft magnetic composite, and the in-plane hysteresis loop is more easily magnetized to saturation state. The degree of plane orientation is 98.46%. The fitting analysis results of the Jiles-Atherton model also prove its easy plane characteristic, and has higher effective permeability and lower power loss than the counterparts of the none easy plane γ'-Fe4N composite that is not ball-milled. After loss separation, it is found that in a low frequency range, hysteresis loss is the main loss, while in a high frequency range, the excess loss will surpass the hysteresis loss, acting as the main loss, the magnetostatic easy plane γ'-Fe4N soft magnetic composites material reduces hysteresis loss and excess loss. Comparing with similar soft magnetic composites, the eddy current effect in magnetic iron particles is reduced by nitriding process, and the magnetostatic easy plane γ'-Fe4N soft magnetic composite has excellent high-frequency soft magnetic properties. Magnetostatic easy plane γ'-Fe4N provides a new idea for the high-frequency application of soft magnetic composites matching the third generation wide bandgap semiconductors.
      通信作者: 乔亮, qiaoliang@lzu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2021YFB3501302) 、国家自然科学基金(批准号: 51731001)和白云鄂博稀土资源研究与综合利用国家重点实验室重点研发项目资助的课题.
      Corresponding author: Qiao Liang, qiaoliang@lzu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2021YFB3501302), the National Natural Science Foundation of China (Grant No. 51731001), and the State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization’s Key Research and Development Projects of China.
    [1]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 418Google Scholar

    [2]

    Périgo E A, Weidenfeller B, Kollár P, Füzer J 2018 Appl. Phys. Rev. 5 031301Google Scholar

    [3]

    孙忠巍 2013 硕士学位论文 (北京: 北京工业大学)

    Sun Z W 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [4]

    Shirane G, Takei W J, Ruby S L 1962 Phys. Rev. 126 49Google Scholar

    [5]

    Peng X, Yu S, Chang J, Ge M, Li J, Ellis T, Yang Y, Xu J, Hong B, Jin D, Jin H, Wang X, Ge H 2020 J. Magn. Magn. Mater. 500 166407Google Scholar

    [6]

    Wu X L, Zhong W, Jiang H Y, Tang N J, Zou W Q, Du Y W 2004 J. Magn. Magn. Mater. 281 77Google Scholar

    [7]

    Wallace W E, Huang M Q 1994 J. Appl. Phys. 76 6648Google Scholar

    [8]

    Kim T K, Takahashi M 1972 Appl. Phys. Lett. 20 492Google Scholar

    [9]

    Coey J M D, Smith P A I 1999 J. Magn. Magn. Mater. 200 405Google Scholar

    [10]

    成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林 2015 物理学报 64 156301Google Scholar

    Cheng T M, Sun T, Zhang L Y, Zhang X X, Zhu L, Li L 2015 Acta Phys. Sin. 64 156301Google Scholar

    [11]

    李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proceed. CSEE 31 124

    [12]

    Yu M J, Xu Y, Mao Q, Li F, Wang C 2016 J. Alloys Compd. 656 362Google Scholar

    [13]

    瞿志学, 王群, 孙忠巍, 潘伟 2013 稀有金属材料与工程 42 126Google Scholar

    Qu Z X, Wang Q, Sun Z W, Pan W 2013 Rare Metal Mater. Eng. 42 126Google Scholar

    [14]

    Narahara A, Ito K, Suemasu T, Takahashi Y K, Ranajikanth A, Hono K 2009 Appl. Phys. Lett. 94 202502Google Scholar

    [15]

    卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民 2019 物理学报 68 118101

    Lu Q H, Tang X L, Song Y Z, Zuo X W, Han G L, Yan P X, Liu W M 2019 Acta Phys. Sin. 68 118101

    [16]

    薛德胜, 陈子瑜, 李发伸 1996 兰州大学学报(自然科学版) 32 49

    Xue D S, Chen Z Y, Li F S 1996 J. Lanzhou Univ. (Natural Sciences) 32 49

    [17]

    Zhao Z J, Xue D S, Li F S 2001 J. Magn. Magn. Mater. 232 155Google Scholar

    [18]

    薛德胜, 李发伸 1997 中国科学(A辑) 27 275

    Xue D S, Li F S 1997 Sci. China (Ser. A) 27 275

    [19]

    Zhang C, Liu X, Li M, Liu C, Li H, Meng X, Rehman K M U 2017 J. Mater. Sci. Mater. Electron. 29 1254

    [20]

    王国武 2013 博士学位论文 (兰州: 兰州大学)

    Wang G W 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [21]

    Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T, Li F S 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [22]

    Takanori Tsutaoka 2003 J. Appl. Phys. 93 2789Google Scholar

    [23]

    Kollár P, Vojtek V, Birčáková Z, Füzer J, Fáberová M, Bureš R 2014 J. Magn. Magn. Mater. 353 65Google Scholar

    [24]

    Taghvaei A H, Shokrollahi H, Janghorban K 2009 Mater. Des. 30 3989Google Scholar

    [25]

    Taghvaei A H, Ebrahimi A, Gheisari K 2010 J. Magn. Magn. Mater. 322 3748Google Scholar

    [26]

    Chiriac H 2003 IEEE Trans. Magn. 39 3040Google Scholar

    [27]

    Liu H J, Su H L, Geng W B, Sun Z G, Song T T, Tong X C, Zou Z Q, Wu Y C, Du Y W 2016 J. Supercond. Nov. Magn. 29 463Google Scholar

    [28]

    熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏 2022 物理学报 71 157502Google Scholar

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71 157502Google Scholar

    [29]

    Yao Z, Peng Y, Xia C, Yi X, Mao S, Zhang M 2020 J. Alloys Compd. 827 154345Google Scholar

    [30]

    Peng Y, Yi Y, Li L, Ai H, Wang X, Chen L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [31]

    Liu J H, Peng X L, Hong B, Xu J C, Han Y B, Li J, Ge H L, Yang Y T, Wang X Q 2021 J. Magn. Magn. Mater. 532 167994Google Scholar

  • 图 1  γ'-Fe4N复合物制备示意图

    Fig. 1.  Schematic diagram of the preparation of γ'-Fe4N composite.

    图 2  不同温度、时间下氮化产物的X射线衍射图

    Fig. 2.  X-ray diffraction patterns of nitriding products synthesized under different temperatures and times.

    图 3  (a) 非易面γ'-Fe4N颗粒的SEM图像; (b) 易面γ'-Fe4N颗粒的SEM图像; (c) 单个易面γ'-Fe4N颗粒侧面的SEM图像

    Fig. 3.  (a) SEM image of none easy plane γ'-Fe4N particles; (b) SEM image of easy plane γ'-Fe4N particles; (c) SEM image of a single easy plane γ'-Fe4N particle profile.

    图 4  磁滞回线的实测及J-A模型拟合结果 (a) 非易面γ'-Fe4N粉末; (b) 易面γ'-Fe4N复合物面内以及面外

    Fig. 4.  Hysteresis loop measured and J-A model fitted: (a) None easy plane γ'-Fe4N powder; (b) in-plane and out-of-plane of easy plane γ'-Fe4N composite.

    图 5  (a) 易面和非易面γ'-Fe4N复合物的磁谱实测结果; (b) 易面γ'-Fe4N复合物的磁谱拟合结果与实测结果; (c) 非易面 γ'-Fe4N复合物的磁谱拟合结果及实测结果

    Fig. 5.  (a) Magnetic spectrum measurement of easy plane and none plane γ'-Fe4N composite; (b) magnetic spectrum measurement and fitting results of easy plane γ'-Fe4N composite; (c) magnetic spectrum measurement and fitting results of none easy plane γ'-Fe4N composite.

    图 6  B = 8 mT下易面和非易面γ'-Fe4N复合物的损耗 (a) 总损耗; (b) 磁滞损耗; (c) 涡流损耗; (d) 剩余损耗; (e) 非易面γ'-Fe4N复合物的损耗分离结果; (f) 易面γ'-Fe4N复合物的损耗分离结果

    Fig. 6.  Losses of easy plane and none plane γ'-Fe4N composite at B = 8 mT: (a) Total losses; (b) hysteresis losses; (c) eddy current losses; (d) residual losses; (e) depletion separation results of none easy plane γ'-Fe4N composite; (f) depletion separation results of easy plane γ'-Fe4N composite.

    图 7  B = 8 mT下的损耗分离 (a) 易面γ'-Fe4N复合物; (b) 非易面γ'-Fe4N复合物

    Fig. 7.  Loss separation at B = 8 mT: (a) Easy plane γ'-Fe4N composite; (b) none easy plane γ'-Fe4N composite.

    图 8  Pcv = 500 kW/m3时, 易面γ'-Fe4N复合物的性能因子曲线

    Fig. 8.  Performance factor curve of the easy-plane γ'-Fe4N composite at Pcv = 500 kW/m3.

    表 1  非易面γ'-Fe4N粉末及易面γ'-Fe4N的J-A拟合参数

    Table 1.  J-A fitting parameters of none easy plane γ'-Fe4N powder and easy plane γ'-Fe4N composite.

    非易面
    γ'-Fe4N
    易面γ'-Fe4N
    (面内)
    易面γ'-Fe4N
    (面外)
    J-A拟合参数
    a/104
    60.03.220.0
    J-A拟合参数
    k/103
    3.14.012.0
    Mr/(emu·g–1)3.4968.8402.170
    Hc/Oe31.65851.29391.460
    下载: 导出CSV

    表 2  易面及非易面γ'-Fe4N复合物的磁谱拟合参数

    Table 2.  Magnetic spectral fitting parameters of easy plane γ'-Fe4N and none easy plane γ'-Fe4N composite.

    畴壁移动畴内转动
    $ {\chi }_{{\rm{d}}0} $$ {\omega }_{{\rm{d}}0}/10 $10β/1010$ {\chi }_{{\rm{s}}0} $$ {\omega }_{{\rm{s}}0}/10 $10$ \vartheta $
    易面γ'-Fe4N
    复合物
    6.00.35.84.70.71.2
    非易面γ'-Fe4N
    复合物
    5.84.010.03.71.31.5
    下载: 导出CSV

    表 3  非易面γ'-Fe4N复合材料和易面γ'-Fe4N复合物损耗分离的拟合参数

    Table 3.  Simulated parameters for loss separation of none easy plane γ'-Fe4N composite and easy plane γ'-Fe4N composite.

    Physt/(kW·m–3)Peddy/(kW·m–3)Pex/(kW·m–3)
    chysth$ {c}_{{\rm{e}}{\rm{d}}{\rm{d}}{\rm{y}}}^{{\rm{i}}{\rm{n}}{\rm{t}}{\rm{e}}{\rm{r}}} $/10–10$ {c}_{{\rm{e}}{\rm{d}}{\rm{d}}{\rm{y}}}^{{\rm{i}}{\rm{n}}{\rm{t}}{\rm{r}}{\rm{a}}} $/10–6cexcxy
    非易面γ'-Fe4N复合物3.63832.16529.240.4241.19652.14311.0731
    易面γ'-Fe4N复合物5.30962.33155.001.4120.0276782.14791.3235
    下载: 导出CSV

    表 4  不同软磁材料的功率损耗对比[27-31]

    Table 4.  Comparison of power loss of different soft magnetic materials[27-31].

    Pcv/(kW·m–3)PF/(T·kHz)Ref.
    This work235.06
    (1000 kHz, 10 mT)
    10
    Fe-Si-Al power270
    (50 kHz, 10 mT)
    0.5[27]
    FeNiMo/SiO2217.3
    (50 kHz, 50 mT)
    2.5[28]
    FeNiMo/Al2O3321.78
    (50 kHz, 100 mT)
    5[29]
    Fe/NiZn199.3
    (100 kHz, 20 mT)
    2[30]
    Fe/Co2Z380
    (590 kHz, 5 mT)
    2.95[31]
    下载: 导出CSV
  • [1]

    Silveyra J M, Ferrara E, Huber D L, Monson T C 2018 Science 362 418Google Scholar

    [2]

    Périgo E A, Weidenfeller B, Kollár P, Füzer J 2018 Appl. Phys. Rev. 5 031301Google Scholar

    [3]

    孙忠巍 2013 硕士学位论文 (北京: 北京工业大学)

    Sun Z W 2013 M. S. Thesis (Beijing: Beijing University of Technology) (in Chinese)

    [4]

    Shirane G, Takei W J, Ruby S L 1962 Phys. Rev. 126 49Google Scholar

    [5]

    Peng X, Yu S, Chang J, Ge M, Li J, Ellis T, Yang Y, Xu J, Hong B, Jin D, Jin H, Wang X, Ge H 2020 J. Magn. Magn. Mater. 500 166407Google Scholar

    [6]

    Wu X L, Zhong W, Jiang H Y, Tang N J, Zou W Q, Du Y W 2004 J. Magn. Magn. Mater. 281 77Google Scholar

    [7]

    Wallace W E, Huang M Q 1994 J. Appl. Phys. 76 6648Google Scholar

    [8]

    Kim T K, Takahashi M 1972 Appl. Phys. Lett. 20 492Google Scholar

    [9]

    Coey J M D, Smith P A I 1999 J. Magn. Magn. Mater. 200 405Google Scholar

    [10]

    成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林 2015 物理学报 64 156301Google Scholar

    Cheng T M, Sun T, Zhang L Y, Zhang X X, Zhu L, Li L 2015 Acta Phys. Sin. 64 156301Google Scholar

    [11]

    李贞, 李庆民, 李长云, 孙秋芹, 娄杰 2011 中国电机工程学报 31 124

    Li Z, Li Q M, Li C Y, Sun Q Q, Lou J 2011 Proceed. CSEE 31 124

    [12]

    Yu M J, Xu Y, Mao Q, Li F, Wang C 2016 J. Alloys Compd. 656 362Google Scholar

    [13]

    瞿志学, 王群, 孙忠巍, 潘伟 2013 稀有金属材料与工程 42 126Google Scholar

    Qu Z X, Wang Q, Sun Z W, Pan W 2013 Rare Metal Mater. Eng. 42 126Google Scholar

    [14]

    Narahara A, Ito K, Suemasu T, Takahashi Y K, Ranajikanth A, Hono K 2009 Appl. Phys. Lett. 94 202502Google Scholar

    [15]

    卢启海, 唐晓莉, 宋玉哲, 左显维, 韩根亮, 闫鹏勋, 刘维民 2019 物理学报 68 118101

    Lu Q H, Tang X L, Song Y Z, Zuo X W, Han G L, Yan P X, Liu W M 2019 Acta Phys. Sin. 68 118101

    [16]

    薛德胜, 陈子瑜, 李发伸 1996 兰州大学学报(自然科学版) 32 49

    Xue D S, Chen Z Y, Li F S 1996 J. Lanzhou Univ. (Natural Sciences) 32 49

    [17]

    Zhao Z J, Xue D S, Li F S 2001 J. Magn. Magn. Mater. 232 155Google Scholar

    [18]

    薛德胜, 李发伸 1997 中国科学(A辑) 27 275

    Xue D S, Li F S 1997 Sci. China (Ser. A) 27 275

    [19]

    Zhang C, Liu X, Li M, Liu C, Li H, Meng X, Rehman K M U 2017 J. Mater. Sci. Mater. Electron. 29 1254

    [20]

    王国武 2013 博士学位论文 (兰州: 兰州大学)

    Wang G W 2022 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [21]

    Wu P, Zhang Y D, Hao H B, Qiao L, Liu X, Wang T, Li F S 2022 J. Magn. Magn. Mater. 549 168962Google Scholar

    [22]

    Takanori Tsutaoka 2003 J. Appl. Phys. 93 2789Google Scholar

    [23]

    Kollár P, Vojtek V, Birčáková Z, Füzer J, Fáberová M, Bureš R 2014 J. Magn. Magn. Mater. 353 65Google Scholar

    [24]

    Taghvaei A H, Shokrollahi H, Janghorban K 2009 Mater. Des. 30 3989Google Scholar

    [25]

    Taghvaei A H, Ebrahimi A, Gheisari K 2010 J. Magn. Magn. Mater. 322 3748Google Scholar

    [26]

    Chiriac H 2003 IEEE Trans. Magn. 39 3040Google Scholar

    [27]

    Liu H J, Su H L, Geng W B, Sun Z G, Song T T, Tong X C, Zou Z Q, Wu Y C, Du Y W 2016 J. Supercond. Nov. Magn. 29 463Google Scholar

    [28]

    熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏 2022 物理学报 71 157502Google Scholar

    Xiong Z W, Yang J, Wang Y, Yang L, Guan X, Cao L H, Wang J, Gao Z P 2022 Acta Phys. Sin. 71 157502Google Scholar

    [29]

    Yao Z, Peng Y, Xia C, Yi X, Mao S, Zhang M 2020 J. Alloys Compd. 827 154345Google Scholar

    [30]

    Peng Y, Yi Y, Li L, Ai H, Wang X, Chen L 2017 J. Magn. Magn. Mater. 428 148Google Scholar

    [31]

    Liu J H, Peng X L, Hong B, Xu J C, Han Y B, Li J, Ge H L, Yang Y T, Wang X Q 2021 J. Magn. Magn. Mater. 532 167994Google Scholar

  • [1] 肖忆瑶, 何佳豪, 陈南锟, 王超, 宋宁宁. 基于负载Fe3O4纳米微球的大尺寸单层二维Ti3C2Tx微波吸收性能. 物理学报, 2023, 72(21): 217501. doi: 10.7498/aps.72.20231200
    [2] 任国梁, 申开波, 刘永佳, 刘英光. 类石墨烯氮化碳结构(C3N)热传导机理研究. 物理学报, 2023, 72(1): 013102. doi: 10.7498/aps.72.20221441
    [3] 白如雪, 郭红霞, 张鸿, 王迪, 张凤祁, 潘霄宇, 马武英, 胡嘉文, 刘益维, 杨业, 吕伟, 王忠明. 增强型Cascode结构氮化镓功率器件的高能质子辐射效应研究. 物理学报, 2023, 72(1): 012401. doi: 10.7498/aps.72.20221617
    [4] 黄梓樾, 邓宇, 季小玲. 球差对高功率激光上行大气传输光束质量的影响. 物理学报, 2021, 70(23): 234202. doi: 10.7498/aps.70.20211226
    [5] 吴洋, 陈奇, 徐睿莹, 葛睿, 张彪, 陶旭, 涂学凑, 贾小氢, 张蜡宝, 康琳, 吴培亨. 氮化铌纳米线光学特性. 物理学报, 2018, 67(24): 248501. doi: 10.7498/aps.67.20181646
    [6] 李文宇, 霍格, 黄岩, 董丽娟, 卢学刚. 空心Fe3O4纳米微球的制备及超顺磁性. 物理学报, 2018, 67(17): 177501. doi: 10.7498/aps.67.20180579
    [7] 李淑萍, 张志利, 付凯, 于国浩, 蔡勇, 张宝顺. 基于原位等离子体氮化及低压化学气相沉积-Si3N4栅介质的高性能AlGaN/GaN MIS-HEMTs器件的研究. 物理学报, 2017, 66(19): 197301. doi: 10.7498/aps.66.197301
    [8]
    1. 翟顺成, 郭平, 郑继明, 赵普举, 索兵兵, 万云, 
    第一性原理研究O和S掺杂的石墨相氮化碳(g-C3N4)6量子点电子结构和光吸收性质. 物理学报, 2017, 66(18): 187102. doi: 10.7498/aps.66.187102
    [9] 成泰民, 孙腾, 张龙燕, 张新欣, 朱林, 李林. 高压下'-Fe4N晶态合金的声子稳定性与磁性. 物理学报, 2015, 64(15): 156301. doi: 10.7498/aps.64.156301
    [10] 孟庆苗, 蒋继建, 李传安. 球对称动态黑洞视界附近的瞬时辐射能通量及瞬时辐射功率. 物理学报, 2010, 59(3): 1481-1486. doi: 10.7498/aps.59.1481
    [11] 许红斌, 王渊旭. 过渡金属Tc及其氮化物TcN,TcN2,TcN3与TcN4低压缩性的第一性原理计算研究. 物理学报, 2009, 58(8): 5645-5652. doi: 10.7498/aps.58.5645
    [12] 孟庆苗, 蒋继建, 王帅. 静态球对称黑洞的热质点模型及辐射功率. 物理学报, 2009, 58(11): 7486-7490. doi: 10.7498/aps.58.7486
    [13] 范江玮, 卞 清, 殷士龙, 闫文盛, 刘文汉, 韦世强. XAFS和XRD研究高能球磨对Fe70Cu30合金结构的影响. 物理学报, 2004, 53(2): 514-520. doi: 10.7498/aps.53.514
    [14] 刘 实, 郑 华, 赵 越, 熊良钺, 王隆保, 杨 勋. 氦在球磨贮氢合金中的存在行为研究. 物理学报, 2003, 52(3): 756-760. doi: 10.7498/aps.52.756
    [15] 柳林. 机械驱动下Ta-N2氮化反应的研究. 物理学报, 2002, 51(3): 603-608. doi: 10.7498/aps.51.603
    [16] 文双春, 范滇元. 增益(损耗)介质中高功率激光束的小尺度自聚焦理论研究. 物理学报, 2000, 49(7): 1282-1286. doi: 10.7498/aps.49.1282
    [17] 杨杭生, 吴国涛, 张孝彬, 陈小华, 卢筱楠, 王淼, 王春生, 何丕模, 徐铸德, 李文铸. 机械球磨对石墨结构的影响. 物理学报, 2000, 49(3): 522-526. doi: 10.7498/aps.49.522
    [18] 陈俊芳, 王卫乡, 刘颂豪, 任兆杏. 氮化硅薄膜的微结构. 物理学报, 1998, 47(9): 1529-1535. doi: 10.7498/aps.47.1529
    [19] 胡海天, 来 冰, 袁泽亮, 丁训民, 侯晓远. K/GaAs(100)表面的氮化. 物理学报, 1998, 47(6): 1041-1046. doi: 10.7498/aps.47.1041
    [20] 李子荣, 孟庆安, 曹琪娟, 孙克, 魏玉年. Fe4N合金的各向异性超精细相互作用. 物理学报, 1996, 45(2): 314-317. doi: 10.7498/aps.45.314
计量
  • 文章访问数:  3998
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-10
  • 修回日期:  2023-05-07
  • 上网日期:  2023-05-08
  • 刊出日期:  2023-07-05

/

返回文章
返回