搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闪电脉冲电磁场在地下空间的分布特性

张少卿 吴群

引用本文:
Citation:

闪电脉冲电磁场在地下空间的分布特性

张少卿, 吴群

Distribution characteristics of lightning electromagnetic pulsed fields under the ground

Zhang Shao-Qing, Wu Qun
PDF
导出引用
  • 为了研究闪电脉冲电磁场(LEMP)在地下传播的过程与空间分布特性, 本文采用一种改进的时域有限差分法(FDTD)计算了LEMP在整个地下空间的传播过程. 与以往发表的研究只局限在个别观察点的讨论不同, 本文通过计算得到了空间中所有网格位置上的电磁场、时间导数、功率密度和能量密度及它们的峰值, 并将它们按照空间坐标表示在相应的分布彩图中. 发现在靠近地表和远离闪电通道的区域内, LEMP的各个分量同时在平行和垂直地面的两个方向上呈指数型衰减. 其中磁场与水平电场的峰值在整个空间极性统一, 且呈现类双指数形分布. 而垂直电场在地下的峰值分为极性相反的两个区域, 并且靠近闪电通道的区域呈类球状分布. 其他特性参量也有类似以上的空间分布特点. 并且本文通过对不同大地电导率、电容率、放电通道模型和基电流情况的计算, 发现虽然在个别情况下LEMP 在地下空间的数值整体增大, 但整体分布特征并未改变. 即使是在水平或垂直分层大地的情况下, 同一层内部仍然具有相同的分布规律. 甚至是在击中避雷针情况下, LEMP在地下空间的分布特点也仍然未变. 而这些分布规律和特征的发现和利用, 将为地下管线、设备、线缆的电磁防护设计与位置规划提供重要的支持.
    In order to repeat the propagation and its distribution characteristics, the lightning electromagnetic field (LEMP) in the entire space is calculated by a modified finite difference time-domain (FDTD) approach in this paper. Different from issued results, in which the electromagnetic field operates only at some discrete points near the ground, the LEMP and its time derivatives, power density and energy density at each unit in the whole space under the ground are calculated and expressed as groups of pictures. We find LEMPs attenuate exponentially in the horizontal and vertical direction, in the area near the ground and far from the discharge channel. The peak values of horizontal electric field and azimuthal magnetic field each have an unaltered polarity and their contours are similar to double exponential functions in the entire space under the ground. However the peak values of vertical electric field can be divided into two opposite-polarity parts in the whole area under the ground, and the contours in the area near the strike channel are spherical in shape. The other components have similar features. We also calculate the LEMPs with different values of ground conductivity, ground permittivity, return model and base current, and the characteristics of distribution are not changed, although the values are enhanced integrally in some cases. And in the layered earth, the LEMP has similar contours inside the layers. Even in the case of striking to the lightning rod, the characteristics of distribution are not changed. These patterns and distribution characteristics of LEMP can provide support and reference in shielding design and route planning under the ground.
    [1]

    Rachidi F 2011 11th International Symposium on Lightning Protection, Fortaleza, Brazil, October 3-7, 2011 p304

    [2]

    Rakov V A, Rachidi F 2009 IEEE Trans. Electromagn. Compat. 51 428

    [3]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 物理学报 61 039203]

    [4]

    Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201]

    [5]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 物理学报 58 6616]

    [6]

    Cooray V 2010 IEEE Trans. Electromagn. Compat. 52 936

    [7]

    Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401

    [8]

    Yang C, Zhou B 2004 IEEE Trans. Electromagn. Compat. 46 133

    [9]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 物理学报 57 1968]

    [10]

    Yang B, Zhou B H, Gao C, Shi L H, Chen B, Chen H L 2011 IEEE Trans. Electromagn. Compat. 53 256

    [11]

    Kirawanich P, Kranthi N, Gunda R, Stillwell A R, Islam N E 2004 J. Appl. Phys. 96 5892

    [12]

    Delfino F, Procopio R, Rossi M, Rachidi F 2009 J. Geophys. Res. 114

    [13]

    Zhang Q L, Yang J, Jing X Q, Li D S, Wang Z H 2012 Atmos. Res. 104 202

    [14]

    Cooray V, Rakov V A 2011 IEEE Trans. Electromagn. Compat. 53 773

    [15]

    Novak T, Fisher T J 2001 IEEE Trans. Ind. Appl. 37 1555

    [16]

    Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498

    [17]

    Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75

    [18]

    Paolone M, Petrache E, Rachidi F, Nucci C A, Rakov V A, Uman M A, Jordan D, Rambo K, Jerauld J, Nyffeler M, Schoene J 2005 IEEE Trans. Electromagn. Compat. 47 509

    [19]

    Yang B, Zhou B H, Chen B, Wang J B, Meng X 2012 IEEE Trans. Electromagn. Compat. 54 323

    [20]

    Yang B, Zhou B H, Meng X 2010 Acta Phys. Sin. 59 8978 (in Chinese) [杨波, 周璧华, 孟鑫 2010 物理学报 59 8978]

    [21]

    Barbosa C F, Paulino J O S 2010 IEEE Trans. Electromagn. Compat. 52 640

    [22]

    Delfino F, Girdinio P, Procopio R, Rossi M, Rachidi F 2011 IEEE Trans. Electromagn. Compat. 53 755

    [23]

    Ren H M, Zhou B H, Rakov V A, Shi L H, Gao C, Yang J H 2008 IEEE Trans. Electromagn. Compat. 50 651

    [24]

    Shoory A, Moini R, Sadeghi S H H, Rakov V A 2005 IEEE Trans. Electromagn. Compat. 47 131

    [25]

    Mimouni A, Rachidi F, Azzouz Z 2008 J. Electrostat. 66 504

    [26]

    Li D M, Wang C, Liu X H 2011 IEEE Trans. Electromagn. Compat. 53 395

    [27]

    Caligaris C, Delfino F, Procopio R 2008 IEEE Trans. Electromagn. Compat. 50 194

    [28]

    He J L, Zeng R 2007 Grounding Technology of Power System (Beijing: Science Press) p23 (in Chinese) [何金良, 曾嵘 2007 电力系统接地技术 (北京: 科学出版社) 第23页]

    [29]

    Philip P B, Thomas A S, Andre R E, Jean P B 1996 IEEE Trans. Power Del. 11 980

    [30]

    Yoshihiro B, Vladimir A R 2005 J. Geophys. Res. 110 D03101

  • [1]

    Rachidi F 2011 11th International Symposium on Lightning Protection, Fortaleza, Brazil, October 3-7, 2011 p304

    [2]

    Rakov V A, Rachidi F 2009 IEEE Trans. Electromagn. Compat. 51 428

    [3]

    Wang C X, Qie X S, Jiang R B, Yang J 2012 Acta Phys. Sin. 61 039203 (in Chinese) [王彩霞, 郄秀书, 蒋如斌, 杨静 2012 物理学报 61 039203]

    [4]

    Jiang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201 (in Chinese) [蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201]

    [5]

    Zhao Y, Qie X S, Kong X Z, Zhang G S, Zhang T, Yang J, Feng G L, Zhang Q L, Wang D F 2009 Acta Phys. Sin. 58 6616 (in Chinese) [赵阳, 郄秀书, 孔祥贞, 张广庶, 张彤, 杨静, 冯桂力, 张其林, 王东方 2009 物理学报 58 6616]

    [6]

    Cooray V 2010 IEEE Trans. Electromagn. Compat. 52 936

    [7]

    Delfino F, Procopio R, Rossi M, Rachidi F, Nucci C A 2007 IEEE Trans. Electromagn. Compat. 49 401

    [8]

    Yang C, Zhou B 2004 IEEE Trans. Electromagn. Compat. 46 133

    [9]

    Yang J, Qie X S, Wang J G, Zhao Y, Zhang Q L, Yuan T, Zhou Y J, Feng G L 2008 Acta Phys. Sin. 57 1968 (in Chinese) [杨静, 郄秀书, 王建国, 赵阳, 张其林, 袁铁, 周筠珺, 冯桂力 2008 物理学报 57 1968]

    [10]

    Yang B, Zhou B H, Gao C, Shi L H, Chen B, Chen H L 2011 IEEE Trans. Electromagn. Compat. 53 256

    [11]

    Kirawanich P, Kranthi N, Gunda R, Stillwell A R, Islam N E 2004 J. Appl. Phys. 96 5892

    [12]

    Delfino F, Procopio R, Rossi M, Rachidi F 2009 J. Geophys. Res. 114

    [13]

    Zhang Q L, Yang J, Jing X Q, Li D S, Wang Z H 2012 Atmos. Res. 104 202

    [14]

    Cooray V, Rakov V A 2011 IEEE Trans. Electromagn. Compat. 53 773

    [15]

    Novak T, Fisher T J 2001 IEEE Trans. Ind. Appl. 37 1555

    [16]

    Petrache E, Rachidi F, Paolone M, Nucci C A, Rakov V A, Uman M A 2005 IEEE Trans. Electromagn. Compat. 47 498

    [17]

    Cooray V 2001 IEEE Trans. Electromagn. Compat. 43 75

    [18]

    Paolone M, Petrache E, Rachidi F, Nucci C A, Rakov V A, Uman M A, Jordan D, Rambo K, Jerauld J, Nyffeler M, Schoene J 2005 IEEE Trans. Electromagn. Compat. 47 509

    [19]

    Yang B, Zhou B H, Chen B, Wang J B, Meng X 2012 IEEE Trans. Electromagn. Compat. 54 323

    [20]

    Yang B, Zhou B H, Meng X 2010 Acta Phys. Sin. 59 8978 (in Chinese) [杨波, 周璧华, 孟鑫 2010 物理学报 59 8978]

    [21]

    Barbosa C F, Paulino J O S 2010 IEEE Trans. Electromagn. Compat. 52 640

    [22]

    Delfino F, Girdinio P, Procopio R, Rossi M, Rachidi F 2011 IEEE Trans. Electromagn. Compat. 53 755

    [23]

    Ren H M, Zhou B H, Rakov V A, Shi L H, Gao C, Yang J H 2008 IEEE Trans. Electromagn. Compat. 50 651

    [24]

    Shoory A, Moini R, Sadeghi S H H, Rakov V A 2005 IEEE Trans. Electromagn. Compat. 47 131

    [25]

    Mimouni A, Rachidi F, Azzouz Z 2008 J. Electrostat. 66 504

    [26]

    Li D M, Wang C, Liu X H 2011 IEEE Trans. Electromagn. Compat. 53 395

    [27]

    Caligaris C, Delfino F, Procopio R 2008 IEEE Trans. Electromagn. Compat. 50 194

    [28]

    He J L, Zeng R 2007 Grounding Technology of Power System (Beijing: Science Press) p23 (in Chinese) [何金良, 曾嵘 2007 电力系统接地技术 (北京: 科学出版社) 第23页]

    [29]

    Philip P B, Thomas A S, Andre R E, Jean P B 1996 IEEE Trans. Power Del. 11 980

    [30]

    Yoshihiro B, Vladimir A R 2005 J. Geophys. Res. 110 D03101

  • [1] 李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔. 含氘电极真空弧等离子体空间分布特性诊断研究. 物理学报, 2022, 71(4): 042901. doi: 10.7498/aps.71.20211835
    [2] 罗小军, 石立华, 张琪, 邱实, 李云, 刘毅诚, 段艳涛. 一次人工触发闪电回击过程的光辐射色散特性分析. 物理学报, 2022, 71(17): 179201. doi: 10.7498/aps.71.20220479
    [3] 李杰, 郑乐, 董攀, 龙继东, 王韬, 刘飞翔. 含氘电极真空弧等离子体空间分布特性诊断研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211835
    [4] 王雪娟, 许伟群, 王海通, 杨静, 袁萍, 张其林, 化乐彦, 张袁瞰. 闪电M分量光谱特征及通道温度和电子密度特性. 物理学报, 2021, 70(9): 099202. doi: 10.7498/aps.70.20201875
    [5] 郭广明, 朱林, 邢博阳. 超声速混合层涡结构内部流体的密度分布特性. 物理学报, 2020, 69(14): 144701. doi: 10.7498/aps.69.20200255
    [6] 苟学强, 张义军, 李亚珺, 陈明理. 闪电双向先导理论及观测:极性不对称、不稳定及间歇性. 物理学报, 2018, 67(20): 205201. doi: 10.7498/aps.67.20181079
    [7] 赵永蓬, 李连波, 崔怀愈, 姜杉, 刘涛, 张文红, 李伟. 毛细管放电69.8nm激光强度空间分布特性研究. 物理学报, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [8] 冯璟华, 蒙世坚, 甫跃成, 周林, 徐荣昆, 张建华, 李林波, 章法强. 含氢电极真空弧放电等离子体时空分布特性研究. 物理学报, 2014, 63(14): 145205. doi: 10.7498/aps.63.145205
    [9] 胡海豹, 鲍路瑶, 黄苏和. 纳米通道内液态微流动密度分布特性数值模拟研究. 物理学报, 2013, 62(12): 124705. doi: 10.7498/aps.62.124705
    [10] 刘曼. 高斯型弱散射屏产生的像面散斑场的分布特性研究. 物理学报, 2013, 62(9): 094204. doi: 10.7498/aps.62.094204
    [11] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤. 依据光谱研究闪电放电通道的半径及能量传输特性. 物理学报, 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [12] 刘冬霞, 郄秀书, 王志超, 吴学珂, 潘伦湘. 飑线系统中的闪电辐射源分布特征及云内电荷结构讨论. 物理学报, 2013, 62(21): 219201. doi: 10.7498/aps.62.219201
    [13] 刘晓静, 张伯军, 王婧, 张斯淇, 巴诺, 李宏, 吴向尧, 郭义庆. 一维光子晶体中光场分布特性分析. 物理学报, 2012, 61(23): 237801. doi: 10.7498/aps.61.237801
    [14] 曹冬杰, 郄秀书, 段树, 宣越建, 王东方. 基于VHF辐射源短基线定位系统对闪电放电过程的研究. 物理学报, 2012, 61(6): 069202. doi: 10.7498/aps.61.069202
    [15] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘. 峰值电流达几千安量级的闪电M分量放电特征及机理探讨. 物理学报, 2011, 60(7): 079201. doi: 10.7498/aps.60.079201
    [16] 卢宗贵, 刘红军, 景峰, 赵卫, 王屹山, 彭志涛. 基于自发参量下转换产生参量荧光的光谱分布特性理论分析. 物理学报, 2009, 58(7): 4689-4696. doi: 10.7498/aps.58.4689
    [17] 张进成, 郑鹏天, 董作典, 段焕涛, 倪金玉, 张金凤, 郝跃. 背势垒层结构对AlGaN/GaN双异质结载流子分布特性的影响. 物理学报, 2009, 58(5): 3409-3415. doi: 10.7498/aps.58.3409
    [18] 王馨悦, 刘振兴, 沈 超. 磁暴主相期间环电流分布特性模拟研究. 物理学报, 2007, 56(12): 7346-7354. doi: 10.7498/aps.56.7346
    [19] 段 萍, 刘金远, 宫 野, 张 宇, 刘 悦, 王晓钢. 等离子体鞘层中尘埃粒子的分布特性. 物理学报, 2007, 56(12): 7090-7099. doi: 10.7498/aps.56.7090
    [20] 兰鹏飞, 陆培祥, 曹 伟. 超短激光脉冲驱动的Thomson散射空间分布特性. 物理学报, 2007, 56(5): 2482-2487. doi: 10.7498/aps.56.2482
计量
  • 文章访问数:  3618
  • PDF下载量:  568
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-06-04
  • 修回日期:  2012-08-13
  • 刊出日期:  2013-01-05

闪电脉冲电磁场在地下空间的分布特性

  • 1. 哈尔滨工业大学, 电子与信息工程学院, 哈尔滨 150001

摘要: 为了研究闪电脉冲电磁场(LEMP)在地下传播的过程与空间分布特性, 本文采用一种改进的时域有限差分法(FDTD)计算了LEMP在整个地下空间的传播过程. 与以往发表的研究只局限在个别观察点的讨论不同, 本文通过计算得到了空间中所有网格位置上的电磁场、时间导数、功率密度和能量密度及它们的峰值, 并将它们按照空间坐标表示在相应的分布彩图中. 发现在靠近地表和远离闪电通道的区域内, LEMP的各个分量同时在平行和垂直地面的两个方向上呈指数型衰减. 其中磁场与水平电场的峰值在整个空间极性统一, 且呈现类双指数形分布. 而垂直电场在地下的峰值分为极性相反的两个区域, 并且靠近闪电通道的区域呈类球状分布. 其他特性参量也有类似以上的空间分布特点. 并且本文通过对不同大地电导率、电容率、放电通道模型和基电流情况的计算, 发现虽然在个别情况下LEMP 在地下空间的数值整体增大, 但整体分布特征并未改变. 即使是在水平或垂直分层大地的情况下, 同一层内部仍然具有相同的分布规律. 甚至是在击中避雷针情况下, LEMP在地下空间的分布特点也仍然未变. 而这些分布规律和特征的发现和利用, 将为地下管线、设备、线缆的电磁防护设计与位置规划提供重要的支持.

English Abstract

参考文献 (30)

目录

    /

    返回文章
    返回