搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国的表面物理

管丹丹 贾金锋

引用本文:
Citation:

中国的表面物理

管丹丹, 贾金锋

Surface physics in China

Guan Dan-Dan, Jia Jin-Feng
PDF
HTML
导出引用
  • 以中国科学院表面物理国家重点实验室为主线, 回顾了表面物理在中国的发展历程, 致敬为中国表面物理做出贡献的老一辈科学家. 通过回顾历史可以看出, 中国表面物理蓬勃发展, 不仅做出了很多国际先进水平的工作, 也培养了大批青年人才, 他们已经成为国际凝聚态物理研究的重要力量.
    In this paper, the development of surface physics in China is comprehensively reviewed, focusing on the State Key Laboratory of Surface Physics at the Chinese Academy of Sciences. It especially recognizes and honors the invaluable contributions made by the older generation of scientists in this field. By looking back at the history, it can be seen that the surface physics has developed vigorously in China: not only have many research papers with international advanced level been published, but also a large number of young talents have been cultivated, who have become an important force in the research of condensed matter physics internationally.
      通信作者: 贾金锋, jfjia@sjtu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2019YFA0308600)、科技创新重大项目(批准号: XDB28000000)和上海市科技重大专项(批准号: 2019SHZDZX01)资助的课题.
      Corresponding author: Jia Jin-Feng, jfjia@sjtu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0308600), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Science and Technology Commission of Shanghai Municipality, China (Grants No. 2019SHZDZX01).
    [1]

    Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 27 1394Google Scholar

    [2]

    Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 28 2049Google Scholar

    [3]

    Jia J F, Zhao R G, and Yang W S 1993 Phys. Rev. B 48 18109Google Scholar

    [4]

    Jia J F, Zhao R G, Yang W S 1993 Phys. Rev. B 48 18101Google Scholar

    [5]

    贾金峰, 赵汝光, 杨威生 1992 物理学报 41 827Google Scholar

    Jia J F, Zhao R G, Yang W S 1992 Acta Phys. Sin. 41 827Google Scholar

    [6]

    Li J L, Jia J F, Liang X J, Liu X, Wang J Z, Xue Q K, Li Z Q, Tse J S, Zhang Z Y, Zhang S B 2002 Phys. Rev. Lett. 88 066101Google Scholar

    [7]

    Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar

    [8]

    Jia J F, Liu X, Wang J Z, Li J L, Wang X S, Xue Q K, Li Z Q, Zhang Z Y, Zhang S B 2002 Phys. Rev. B 66 165412Google Scholar

    [9]

    Xu Z, Bai X D, Wang Z L, Wang E G, 2006 J. Am. Chem. Soc. 128 1052Google Scholar

    [10]

    Xu Z, Bai X D, Wang E G 2006 Appl. Phys. Lett. 88 133107Google Scholar

    [11]

    Wang W L, Bai X D, Liu K H, Xu Z, Golberg D, Bando Y, Wang E G 2006 J. Am. Chem. Soc. 128 6530Google Scholar

    [12]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915Google Scholar

    [13]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802Google Scholar

    [14]

    Zhang Y F, Tang Z, Han T Z, Ma X C, Jia J F, Xue Q K, Xun K, Wu S C 2007 Appl. Phys. Lett. 90 093120Google Scholar

    [15]

    Qi Y, Ma X C, Jiang P, Ji S H, Fu Y H, Jia J F, Xue Q K, Zhang S B 2007 Appl. Phys. Lett. 90 013109Google Scholar

    [16]

    Bao X Y, Zhang Y F, Wang Y P, Jia J F, Xue Q K, Xie X C, Zhao Z X 2005 Phys. Rev. Lett. 95 247005Google Scholar

    [17]

    Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F, Xue Q K, Han Y, Huang S, Liu F 2006 Phys. Rev. Lett. 97 266102Google Scholar

    [18]

    Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B, Xue Q K 2007 Proc. Nat. Acad. Sci. USA 104 9204Google Scholar

    [19]

    Jia J F, Li S C, Zhang Y F, Xue Q K 2007 J. Phys. Soc. Jpn. 76 082001Google Scholar

    [20]

    Chiang T C 2014 Science 306 5703

    [21]

    Zhang G H, Qin H J, Teng J, Guo J D, Guo Q L, Dai X, Fang Z, Wu K H 2009 Appl. Phys. Lett. 95 053114Google Scholar

    [22]

    Song C L, Wang Y L, Jiang Y P, Zhang Y, Chang C Z, Wang L L, He K, Chen X, Jia J F, Wang Y Y, Fang Z, Dai X, Xie X C, Qi X L, Zhang S C, Xue Q K, Ma X C 2010 Appl. Phys. Lett. 97 143118Google Scholar

    [23]

    Li Y Y, Wang G A, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar

    [24]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [25]

    Cheng P, Song C L, Zhang T, Zhang Y Y, Wang Y L, Jia J F, Wang J, Wang Y Y, Zhu B F, Chen X, Ma X C, He K, Wang L L, Dai X, Fang Z, Xie X C, Qi X L, Liu C X, Zhang S C, Xue Q K 2010 Phys. Rev. Lett. 105 076801Google Scholar

    [26]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [27]

    Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2022 Nat. Chem. 14 25Google Scholar

    [28]

    Zhu X T, Cao Y W, Zhang S Y, Jia X, Guo Q L, Yang F, Zhu L F, Zhang J D, Plummer E W, Guo J D 2015 Rev. Sci. Instrum. 86 083902Google Scholar

    [29]

    Li J D, Li J X, Tang J L, Tao Z Y, Xue S W, Liu J X, Peng H L, Chen X Q, Guo J D, Zhu X T 2023 Phys. Rev. Lett. 131 116602Google Scholar

    [30]

    Zhang X, Xu J Y, Tu Y B, Sun K, Tao M L, Xiong Z H, Wu K H, Wang J Z, Xue Q K, Meng S 2018 Phys. Rev. Lett. 121 256001Google Scholar

    [31]

    Yang K, Chen H, Pope T, et al. 2019 Nat. Commun. 10 3599Google Scholar

    [32]

    Zhang Q, Gao A, Meng F, et al. 2021 Nat. Commun. 12 1853Google Scholar

  • 图 1  Si(111)表面生长出的全同铟(a)和铝(b)纳米点阵列

    Fig. 1.  Identical nanocluster arrays of In (a) and Al (b) grown on Si (111) surface.

    图 2  原子级平整的铅薄膜及其超导转变温度和电子态密度随厚度的振荡变化

    Fig. 2.  Pb films with atomic-scale uniformity, and the superconducting transition temperature Tc and the density of states N(EF) as a function of Pb film thickness, demonstrating a nonmonotonic oscillatory behavior in both Tc and N(EF).

    图 3  硒化铋薄膜以五原子层(QL)为单元生长, 从1 QL到6 QL薄膜的角分辨光电子能谱图(a)—(e)和对应的能量分布曲线(f)—(h), 可以清楚看到狄拉克表面态的能隙打开和Rashba型的劈裂[24]

    Fig. 3.  ARPES spectra of Bi2Se3 films at room temperature: (a)–(e) ARPES spectra of 1-6 quintuple layer (QL), the Bi2Se3 films grow in QL-by-QL mode; (f)–(h) the energy distribution curves of (c)–(e) respectively, which clearly shows the opening of the energy gap and the Rashba-type splitting for Dirac surface states[24].

  • [1]

    Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 27 1394Google Scholar

    [2]

    Yang W S, Jona F, Marcus P M 1983 Phys. Rev. B 28 2049Google Scholar

    [3]

    Jia J F, Zhao R G, and Yang W S 1993 Phys. Rev. B 48 18109Google Scholar

    [4]

    Jia J F, Zhao R G, Yang W S 1993 Phys. Rev. B 48 18101Google Scholar

    [5]

    贾金峰, 赵汝光, 杨威生 1992 物理学报 41 827Google Scholar

    Jia J F, Zhao R G, Yang W S 1992 Acta Phys. Sin. 41 827Google Scholar

    [6]

    Li J L, Jia J F, Liang X J, Liu X, Wang J Z, Xue Q K, Li Z Q, Tse J S, Zhang Z Y, Zhang S B 2002 Phys. Rev. Lett. 88 066101Google Scholar

    [7]

    Jia J F, Wang J Z, Liu X, Xue Q K, Li Z Q, Kawazoe Y, Zhang S B 2002 Appl. Phys. Lett. 80 3186Google Scholar

    [8]

    Jia J F, Liu X, Wang J Z, Li J L, Wang X S, Xue Q K, Li Z Q, Zhang Z Y, Zhang S B 2002 Phys. Rev. B 66 165412Google Scholar

    [9]

    Xu Z, Bai X D, Wang Z L, Wang E G, 2006 J. Am. Chem. Soc. 128 1052Google Scholar

    [10]

    Xu Z, Bai X D, Wang E G 2006 Appl. Phys. Lett. 88 133107Google Scholar

    [11]

    Wang W L, Bai X D, Liu K H, Xu Z, Golberg D, Bando Y, Wang E G 2006 J. Am. Chem. Soc. 128 6530Google Scholar

    [12]

    Guo Y, Zhang Y F, Bao X Y, Han T Z, Tang Z, Zhang L X, Zhu W G, Wang E G, Niu Q, Qiu Z Q, Jia J F, Zhao Z X, Xue Q K 2004 Science 306 1915Google Scholar

    [13]

    Zhang Y F, Jia J F, Han T Z, Tang Z, Shen Q T, Guo Y, Qiu Z Q, Xue Q K 2005 Phys. Rev. Lett. 95 096802Google Scholar

    [14]

    Zhang Y F, Tang Z, Han T Z, Ma X C, Jia J F, Xue Q K, Xun K, Wu S C 2007 Appl. Phys. Lett. 90 093120Google Scholar

    [15]

    Qi Y, Ma X C, Jiang P, Ji S H, Fu Y H, Jia J F, Xue Q K, Zhang S B 2007 Appl. Phys. Lett. 90 013109Google Scholar

    [16]

    Bao X Y, Zhang Y F, Wang Y P, Jia J F, Xue Q K, Xie X C, Zhao Z X 2005 Phys. Rev. Lett. 95 247005Google Scholar

    [17]

    Ma L Y, Tang L, Guan Z L, He K, An K, Ma X C, Jia J F, Xue Q K, Han Y, Huang S, Liu F 2006 Phys. Rev. Lett. 97 266102Google Scholar

    [18]

    Ma X C, Jiang P, Qi Y, Jia J F, Yang Y, Duan W H, Li W X, Bao X H, Zhang S B, Xue Q K 2007 Proc. Nat. Acad. Sci. USA 104 9204Google Scholar

    [19]

    Jia J F, Li S C, Zhang Y F, Xue Q K 2007 J. Phys. Soc. Jpn. 76 082001Google Scholar

    [20]

    Chiang T C 2014 Science 306 5703

    [21]

    Zhang G H, Qin H J, Teng J, Guo J D, Guo Q L, Dai X, Fang Z, Wu K H 2009 Appl. Phys. Lett. 95 053114Google Scholar

    [22]

    Song C L, Wang Y L, Jiang Y P, Zhang Y, Chang C Z, Wang L L, He K, Chen X, Jia J F, Wang Y Y, Fang Z, Dai X, Xie X C, Qi X L, Zhang S C, Xue Q K, Ma X C 2010 Appl. Phys. Lett. 97 143118Google Scholar

    [23]

    Li Y Y, Wang G A, Zhu X G, Liu M H, Ye C, Chen X, Wang Y Y, He K, Wang L L, Ma X C, Zhang H J, Dai X, Fang Z, Xie X C, Liu Y, Qi X L, Jia J F, Zhang S C, Xue Q K 2010 Adv. Mater. 22 4002Google Scholar

    [24]

    Zhang Y, He K, Chang C Z, Song C L, Wang L L, Chen X, Jia J F, Fang Z, Dai X, Shan W Y, Shen S Q, Niu Q, Qi X L, Zhang S C, Ma X C, Xue Q K 2010 Nat. Phys. 6 584Google Scholar

    [25]

    Cheng P, Song C L, Zhang T, Zhang Y Y, Wang Y L, Jia J F, Wang J, Wang Y Y, Zhu B F, Chen X, Ma X C, He K, Wang L L, Dai X, Fang Z, Xie X C, Qi X L, Liu C X, Zhang S C, Xue Q K 2010 Phys. Rev. Lett. 105 076801Google Scholar

    [26]

    Feng B J, Zhang J, Zhong Q, Li W B, Li S, Li H, Cheng P, Meng S, Chen L, Wu K H 2016 Nat. Chem. 8 564

    [27]

    Chen C Y, Lv H F, Zhang P, Zhuo Z W, Wang Y, Ma C, Li W B, Wang X G, Feng B J, Cheng P, Wu X J, Wu K H, Chen L 2022 Nat. Chem. 14 25Google Scholar

    [28]

    Zhu X T, Cao Y W, Zhang S Y, Jia X, Guo Q L, Yang F, Zhu L F, Zhang J D, Plummer E W, Guo J D 2015 Rev. Sci. Instrum. 86 083902Google Scholar

    [29]

    Li J D, Li J X, Tang J L, Tao Z Y, Xue S W, Liu J X, Peng H L, Chen X Q, Guo J D, Zhu X T 2023 Phys. Rev. Lett. 131 116602Google Scholar

    [30]

    Zhang X, Xu J Y, Tu Y B, Sun K, Tao M L, Xiong Z H, Wu K H, Wang J Z, Xue Q K, Meng S 2018 Phys. Rev. Lett. 121 256001Google Scholar

    [31]

    Yang K, Chen H, Pope T, et al. 2019 Nat. Commun. 10 3599Google Scholar

    [32]

    Zhang Q, Gao A, Meng F, et al. 2021 Nat. Commun. 12 1853Google Scholar

  • [1] 江龙兴, 李庆超, 张旭, 李京峰, 张静, 陈祖信, 曾敏, 吴昊. 基于拓扑/二维量子材料的自旋电子器件. 物理学报, 2024, 73(1): 017505. doi: 10.7498/aps.73.20231166
    [2] 段秀铭, 易志军. 介电环境屏蔽效应对二维InX (X = Se, Te)激子结合能调控机制的理论研究. 物理学报, 2023, 72(14): 147102. doi: 10.7498/aps.72.20230528
    [3] 黄雪峰, 陈矗, 李嘉欣, 张敏琦, 李盛姬. 基于激光悬浮的单颗微米粒子/纳米团簇的散射强度分布测量. 物理学报, 2023, 72(17): 174201. doi: 10.7498/aps.72.20230499
    [4] 吴泽飞, 黄美珍, 王宁. 二维莫尔超晶格中的非线性霍尔效应. 物理学报, 2023, 72(23): 237301. doi: 10.7498/aps.72.20231324
    [5] 陈晓娟, 徐康, 张秀, 刘海云, 熊启华. 二维材料体光伏效应研究进展. 物理学报, 2023, 72(23): 237201. doi: 10.7498/aps.72.20231786
    [6] 吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国. 二维范德瓦尔斯异质结构的制备与物性研究. 物理学报, 2022, 71(4): 048502. doi: 10.7498/aps.71.20212033
    [7] 宋蕊, 王必利, 冯凯, 王黎, 梁丹丹. 二维VOBr2单层的结构畸变及其磁性和铁电性. 物理学报, 2022, 71(3): 037101. doi: 10.7498/aps.71.20211516
    [8] 刘天瑶, 刘灿, 刘开辉. 表界面调控米级二维单晶原子制造. 物理学报, 2022, 71(10): 108103. doi: 10.7498/aps.71.20212399
    [9] 孙颖慧, 穆丛艳, 蒋文贵, 周亮, 王荣明. 金属纳米颗粒与二维材料异质结构的界面调控和物理性质. 物理学报, 2022, 71(6): 066801. doi: 10.7498/aps.71.20211902
    [10] 黄玉昊, 张贵涛, 王如倩, 陈乾, 王金兰. 二维双金属铁磁半导体CrMoI6的电子结构与稳定性. 物理学报, 2021, 70(20): 207301. doi: 10.7498/aps.70.20210949
    [11] 宋蕊. 二维VOBr2单层的结构畸变及其磁性和铁电性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211516
    [12] 陈旭凡, 杨强, 胡小会. 过渡金属原子掺杂对二维CrBr3电磁学性能的调控. 物理学报, 2021, 70(24): 247401. doi: 10.7498/aps.70.20210936
    [13] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展. 物理学报, 2021, 70(14): 148101. doi: 10.7498/aps.70.20210638
    [14] 刘子媛, 潘金波, 张余洋, 杜世萱. 原子尺度构建二维材料的第一性原理计算研究. 物理学报, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [15] 钟虓䶮, 李卓. 原子尺度材料三维结构、磁性及动态演变的透射电子显微学表征. 物理学报, 2021, 70(6): 066801. doi: 10.7498/aps.70.20202072
    [16] 王慧, 徐萌, 郑仁奎. 二维材料/铁电异质结构的研究进展. 物理学报, 2020, 69(1): 017301. doi: 10.7498/aps.69.20191486
    [17] 王聪, 刘杰, 张晗. 基于二维纳米材料的超快脉冲激光器. 物理学报, 2019, 68(18): 188101. doi: 10.7498/aps.68.20190751
    [18] 史若宇, 王林锋, 高磊, 宋爱生, 刘艳敏, 胡元中, 马天宝. 基于滑动势能面的二维材料原子尺度摩擦行为的量化计算. 物理学报, 2017, 66(19): 196802. doi: 10.7498/aps.66.196802
    [19] 冯黛丽, 冯妍卉, 张欣欣. 小尺寸铝纳米团簇的相变行为. 物理学报, 2013, 62(8): 083602. doi: 10.7498/aps.62.083602
    [20] 王瑾, 张茹. 基于量子尺寸效应的InP纳米内包层光纤研制及放大性. 物理学报, 2009, 58(3): 1857-1862. doi: 10.7498/aps.58.1857
计量
  • 文章访问数:  1095
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-27
  • 修回日期:  2023-12-09
  • 上网日期:  2023-12-12
  • 刊出日期:  2023-12-05

/

返回文章
返回