搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

HI-13串列加速器上不稳定核85Sr(n, γ)截面的替代反应法测量

王涵语 邱奕嘉 林承键 吴晓光 韩银录 吴鸿毅 冯晶 郑云 杨磊 李聪博 骆天鹏 常昶 孙琪 朱德宇 赵亦轩 黄大湖 李天晓 郑敏 赵子豪 朱意威 赵坤灵 孙鹏飞 宋金兴 郭明伟 任四禧 郑小海

引用本文:
Citation:

HI-13串列加速器上不稳定核85Sr(n, γ)截面的替代反应法测量

王涵语, 邱奕嘉, 林承键, 吴晓光, 韩银录, 吴鸿毅, 冯晶, 郑云, 杨磊, 李聪博, 骆天鹏, 常昶, 孙琪, 朱德宇, 赵亦轩, 黄大湖, 李天晓, 郑敏, 赵子豪, 朱意威, 赵坤灵, 孙鹏飞, 宋金兴, 郭明伟, 任四禧, 郑小海

Measurement of 85Sr(n, γ) cross sections of unstable nuclei in HI-13 tandem accelerators by surrogate-reaction method

WANG Hanyu, QIU Yijia, LIN Chengjian, WU Xiaoguang, HAN Yinlu, WU Hongyi, FENG Jing, ZHENG Yun, YANG Lei, LI Congbo, LUO Tianpeng, CAHNG Chang, SUN Qi, ZHU Deyu, ZHAO Yixuan, HUANG Dahu, LI Tianxiao, ZHENG Min, ZHAO Zihao, ZHU Yiwei, ZHAO Kunling, SUN Pengfei, SONG Jinxing, GUO Mingwei, REN Sixi, ZHENG Xiaohai
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 中子辐射俘获截面是核天体物理、核反应堆设计、核医学以及核技术应用等领域中所需的关键数据. 目前, 受制于实验技术上的困难, 缺少半衰期短至数年或更短核素的中子辐射俘获截面测量数据. 本文采用一种间接测量短寿命核素反应截面的方法——替代反应法, 在中国原子能科学研究院北京HI-13串列加速器上利用89Y(p, α)反应作为替代反应, 产生与短寿命核素中子辐射俘获85Sr(n, γ)反应相同的复合核86Sr*进行替代反应法的实验研究. 通过使用硅探测器组成的望远镜阵列与HPGe探测器阵列符合测量, 得到了与特定能量角度的出射α粒子符合γ射线能谱, 从而获得了不同激发能下复合核的γ衰变的概率. 结合使用UNF唯象光学模型计算的复合核形成截面, 得到了中子能量范围En = 0.02—1.22 MeV的85Sr中子辐射俘获截面. 并且, 基于TALYS计算的自旋宇称分布, 建立了修正模型用于补偿直接反应和替代反应中自旋-宇称布居的差异, 改进了基于WeisskopfEwing近似下的间接测量结果.
    Neutron capture cross sections, as important parameters for describing the probability of neutron-nucleus reactions, play a key role in multiple scientific fields. In astrophysics, neutron capture cross section data are essential elements for understanding stellar nucleosynthesis processes. In particular, in extreme environments such as supernova explosions and neutron star mergers, accurate neutron capture cross sections can reveal the secrets of heavy element formation. In the field of national security, neutron capture cross sections are crucial for the design of nuclear weapons and the security of nuclear materials. By accurately grasping the neutron capture characteristics of different nuclides, the nuclear reaction process can be optimized to ensure strategic security. In addition, in the simulation of nuclear power generation, neutron capture cross section data are the basis of reactor design and operational analysis. Through in-depth research on and precise measurements of neutron capture cross sections, the safety and efficiency of nuclear reactors can be improved, thus promoting the sustainable development of nuclear energy. At present, there is little research on the neutron capture cross sections of nuclides with half-lives of only a few years or even shorter, mainly due to the complexity of measurement techniques and the instability of the nuclides themselves. The neutron capture cross section data of these nuclides are crucial for reactor design, nuclear medicine applications, and nuclear waste treatment. Further research requires the development of more advanced detection techniques and theoretical models to accurately measure and predict their neutron capture behavior.The surrogate-reaction method, as an effective measurement means, plays an important role in studying reaction cross sections of short-lived nuclides. Its basic idea is to indirectly obtain the reaction cross section information of short-lived nuclides by measuring the specific particles emitted by stable nuclides. Specifically, when stable nuclides are bombarded by high-energy particles, nuclear reactions will occur and specific particles will be released. By accurately measuring the energies, angles, and numbers of these particles, the cross sections of short-lived nuclides in the corresponding reaction can be inferred. This method can not only overcome the technical difficulties in directly measuring short-lived nuclides, but also improve the accuracy and reliability of the measurement results, which provides important support for nuclear physics research. In addition, the surrogate-reaction method also shows broad application prospects in the fields of nuclear technology application and nuclear data assessment.The experiment is carried out on the Beijing HI-13 tandem accelerator at the China Institute of Atomic Energy. 89Y is bombarded with 22 MeV protons, and the 85Sr(n, γ) cross section is measured through the (p, αγ) reaction. The telescope array composed of silicon strip detectors can effectively identify the reaction products. By precisely measuring parameters such as the energies and angles of particles, the array can distinguish different nuclides, thus determining the outgoing particles. Combined with the γ-ray energy spectrum analysis of the HPGe detector, the (n, γ) reaction cross section data of 85Sr under the Weisskopf-Ewing (W-E) approximation are extracted. Due to the mismatch of the Jπ population between the existing alternative reactions and direct reactions, it is necessary to compensate for this mismatch and then correct the results. In order to obtain relatively reliable results, the Jπ population calculated by TALYS is used to revise the experimental data of the (n, γ) cross section.These results indicate that the cross section of 85Sr(n, γ) varies with neutron energy in a specific energy range, which is consistent with the trend of the existing international evaluation library data. This validates the effectiveness of cross section measurement as an alternative reaction method, thereby providing an important experimental basis for further exploring the nuclear reaction mechanism and nuclear data application. This method has reference significance for the cross section measurement of other nuclides.
  • 图 1  替代法原理

    Fig. 1.  Schematic representation of the surrogate reaction method.

    图 2  89Y(p, α)的双微分截面的θ-ϕ分布(黑色框内代表两组探测器能够接收到的部分)

    Fig. 2.  The θ-ϕ distribution of the double differential cross section for 89Y(p, α) (the black box indicates the detectable region covered by two sets of detectors).

    图 3  各个探测器能量分辨率(以60Co的1332.5 keV特征峰的FWHM表征, G代表HPGe同轴型探测器, C代表Clover探测器, 后缀代表Clover探测器的模块编号)

    Fig. 3.  Energy resolutions of various detectors (characterized by the FWHM of the 1332.5 keV characteristic peak of 60Co, where G represents HPGe coaxial detectors, C represents Clover detectors, and the suffix denotes the module number of the Clover detector).

    图 4  真空靶室及实验设备布局 (a)两组ΔEE望远镜在真空靶室中的示意图; (b) 靶室放置在Gamma探测器阵列的照片

    Fig. 4.  The vacuum target chamber and experimental equipment layout: (a) Schematic representation of two sets of ΔEE telescopes in vacuum target chamber; (b) physical diagram of the target chamber placed in the Gamma detector array.

    图 5  在前角处(60°)望远镜探测器中的能量损失与剩余能量关联谱达成的粒子鉴别

    Fig. 5.  The identification achieved in the telescopes at 60° through the energy loss (ΔE) versus residual energy (E).

    图 6  技术路线

    Fig. 6.  Technical route.

    图 7  DSSD正背面的能量关联图 (a) 能量自归一前; (b) 能量自归一后

    Fig. 7.  Front-back energy correlation diagram of DSSD: (a) Before the Self-normalization; (b) after the self-normalization.

    图 8  DSSD 刻度结果 (a)前角(60°) DSSD; (b)后角(–100°) DSSD

    Fig. 8.  DSSD energy calibration: (a) The DSSD at 60°; (b) the DSSD at –100°.

    图 9  DSSD探测器能量分辨率 (a)后角(–100°)探测器; (b)前角(65°)探测器

    Fig. 9.  Energy resolution of the DSSD detector: (a) The detector at –100°; (b) the detector at 65°.

    图 10  等效中子能谱 (a)对应前角(65°)望远镜探测器; (b)对应后角(–100°)望远镜探测器(后续不分析)

    Fig. 10.  The equivalent neutron energy: (a) The DSSD at 65°; (b) the DSSD at –100° (no further analysis).

    图 11  对p +89 Y反应计算模拟的α粒子出射能谱 (a) 以反应道划分; (b) 以反应机制划分

    Fig. 11.  The calculated α emission energy spectrum of the p + 89Y reaction: (a) Classified by reaction channels; (b) classified by reaction mechanisms.

    图 12  α符合HPGe γ能谱, 红线为本底

    Fig. 12.  Coincidence γ-ray spectrum, the red line is the background.

    图 13  (a) ${E_{\text{n}}}$= (0.62±0.15) MeV时对应的α粒子计数; (b) ${E_{\text{n}}}$= (0.62±0.15) MeV时的后角符合γ能谱中1.076 MeV特征峰以及本底(红线); (c) 扣除本底后1.076 MeV的特征峰, 绿线为所作的高斯拟合

    Fig. 13.  (a) The α particle count corresponding to neutron energy point ${E_{\text{n}}}$= (0.62 ± 0.15) MeV; (b) the peak of 1.076 MeV gamma ray with neutron energy at ${E_{\text{n}}}$ = (0.62 ± 0.15) MeV and background obtained by using ROOT program (red line); (c) the peak of 1.076 MeV gamma ray after subtracting the background and the Gaussian fitting (green line).

    图 14  归一化后的γ衰变概率随En的变化曲线(红线代表能量为1.076 MeV特征γ; 蓝线代表能量为1.153 MeV特征γ; 黑线为对各特征γ进行统计加权得到的γ衰变概率)

    Fig. 14.  Normalized γ decay probability as a function of neutron energy (red line represents characteristic γ with energy 1.076 MeV; blue line represents characteristic γ with energy 1.153 MeV; black line shows γ decay probability obtained by statistical weighting of each characteristic γ).

    图 15  UNF计算n +85Sr复合核形成截面随中子能量变化曲线

    Fig. 15.  n + 85Sr compound nucleus formation cross section as a function of neutron energy (calculated by the UNF program).

    图 16  W-E近似下替代反应法计算截面, 黑线为JENDL-5库数据, 蓝线为ENDF-6数据库

    Fig. 16.  Neutron-capture cross section as a function of neutron energy by W-E approximation. The black line corresponds to the data of JENDL-5 and the blue line corresponds to the data of ENDF-6.

    图 17  由TALYS程序计算86Sr*各自旋宇称态的γ衰变概率

    Fig. 17.  The γ-decay probabilities of each spin – parity of 86Sr* calculated by the TALYS program.

    图 18  TALYS程序计算的入射中子能量En = 0.02—1.22 MeV时中子俘获反应及本实验使用的89Y(p, α)产生的86Sr*自旋宇称态的布居概率

    Fig. 18.  Spin - parity population probabilities of 86Sr* population for the 89Y(p, α) and neutron capture reactions at En = 0.02—1.22 MeV.

    图 19  修正后85Sr中子俘获截面

    Fig. 19.  Revised 85Sr neutron capture cross section.

  • [1]

    Arlandini C, Käppeler F, Wisshak K, Gallino R, Lugaro M, Busso M, Straniero O 1999 Astrophys. J. Lett 525 886Google Scholar

    [2]

    Boutoux G, Jurado B, Méot V, Roig O, Mathieu L, Aïche M, Barreau G, Capellan N, Companis I, Czajkowski S, Schmidt K H, Burke J T, Bail A, Daugas J M, Faul T, More P l, Pillet N, Théroine C, Derkx X, Sérot O, Matéa I, Tassan-Got L 2010 Phys. Lett. B 692 297Google Scholar

    [3]

    Arcones A, Bardayan D, Beers T, Bernstein L, Blackmon J, Messer B, Brown B, Brown E, Brune C, Champagne A, Chieffi A, Couture A, Danielewicz P, Diehl R, El-Eid M, Escher J, Fields B, Fröhlich C, Herwig F, Hix W, Iliadis C, Lynch W, McLaughlin G, Meyer B, Mezzacappa A, Nunes F, O'Shea B, Prakash M, Pritychenko B, Reddy S, Rehm E, Rogachev G, Rutledge R 2017 Prog. Part. Nucl. Phys. 94 1Google Scholar

    [4]

    Mumpower M R, Surman R, McLaughlin G C, Aprahamian A 2015 Prog. Part. Nucl. Phys. 86 86

    [5]

    H. Schatz 2016 J. Phys. G: Nucl. Part. Phys 43 064001Google Scholar

    [6]

    Reifarth R, Litvinov Y. A 2014 Phys. Rev. ST Accel. Beams 17 014701Google Scholar

    [7]

    Ratkiewicz A, Cizewski J A, Pain S D, Adekola A S, Burke J T, Casperson R J, Fotiades N, McCleskey M, Burcher S, Shand C M, Austin R A E, Baugher T, Carpenter M P, Devlin M, Escher J, Hardy S, Hatarik R, Howard M E, Hughes R O, Jones K L, Kozub R L, Lister C J, Manning B, O'Donnell J M, Peters W A, Ross T J, Scielzo N D, Seweryniak D, Zhu S 2015 15th International Symposium on Capture Gamma Ray Spectroscopy and Related Topics Dresden, Germany, Auguest 25-29, 2015 p93

    [8]

    Cramer J D, Britt H C 1970 Nucl. Sci. Eng. 41 177Google Scholar

    [9]

    Britt H C, Wilhelmy J B 1979 Nucl. Sci. Eng. 72 222Google Scholar

    [10]

    Boyer S, Dassié D, Wilson J N, Aïche M, Barreau G, Czajkowski S, Grosjean C, Guiral A, Haas B, Osmanov B, Aerts G, Berthoumieux E, Gunsing F, Theisen Ch, Thiollière N, Perrot L 2006 Nucl. Phys. A 775 175Google Scholar

    [11]

    Allmond J, Bernstein L, Beausang C, Phair L, Bleuel D, Burke J, Escher J, Evans K, Goldblum B, Hatarik R, Jeppesen H, Lesher S, Mcmahan M, Rasmussen J, Scielzo N, Wiedeking M 2009 Phys. Rev. C 79 054610Google Scholar

    [12]

    马南茹, 林承键, 贾会明, 徐新星, 杨峰, 杨磊, 孙立杰, 王东玺, 刘祖华, 张焕乔 2017 原子核物理评论 34 351Google Scholar

    Ma N R, Lin C J, Jia H M, Xu X X, Yamg F, Yang L, Sun L J, Wang D X, Liu Z H, Zhang H Q 2017 Nucl. Phys. Rev. 34 351Google Scholar

    [13]

    Yan S Q, Li Z H, Wang Y B, Nishio K, Lugaro M, Karakas A I, Makii H, Mohr P, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Liu W P 2017 Astrophys. J. 848 98Google Scholar

    [14]

    Yan S, Li Z H, Wang Y B, Nishio K, Makii H, Su J, Li Y J, Nishinaka I, Hirose K, Han Y L, Orlandi R, Shen Y P, Guo B, Zeng S, Lian G, Chen Y S, Bai X X, Qiao L H, Liu W 2016 Phys. Rev. C 94 015804Google Scholar

    [15]

    Yan S Q, Li X Y, Nishio K, Lugaro M, Li Z H, Makii H, Pignatari M, Wang Y B, Orlandi R, Hirose K, Tsukada K, Mohr P, Li G S, Wang J G, Gao B S, Han Y L, Guo B, Li Y J, Shen Y P, Sato T K, Ito Y, Suzaki F, Su J, Yang Y Y, Wang J S, Ma J B, Ma P, Bai Z, Xu S W, Ren J, Fan Q W, Zeng S, Han Z Y, Nan W, Nan W K, Chen C, Lian G, Hu Q, Duan F F, Jin S Y, Tang X D, Liu W P 2021 Astrophys. J. 919 84Google Scholar

    [16]

    Escher J, Harke J T, Hughes R O, Scielzo N D, Casperson R J, Ota S, Park H I, Saastamoinen A, Ross T J 2018 Phys. Rev. Lett. 121 052501Google Scholar

    [17]

    Hauser W, Feshbach H 1952 Phys. Rev. 87 366Google Scholar

    [18]

    Weisskopf V F, Ewing D H 1940 Phys. Rev. 57 472Google Scholar

    [19]

    Escher J, Dietrich F. S 2006 Phys. Rev. C 74 054601Google Scholar

    [20]

    Chiba S, Iwamoto O 2010 Phys. Rev. C 81 044604Google Scholar

    [21]

    Escher J, Harke J T, Dietrich F S, Scielzo N D, Thompson I J, Younes W 2012 Rev. Mod. Phys. 84 353Google Scholar

    [22]

    Lesher S R, Phair L, Bernstein L A, Bleuel D L, Harke J T, Church J A, Fallon P, Gibelin J, Scielzo N D, Wiedeking M 2010 Nucl. Instrum. Methods Phys. Res. Sect. A 621 286Google Scholar

    [23]

    洪锐, 李聪博, 李会东, 郑云, 吴晓光, 李天晓, 李韵秋, 吴鸿毅, 郑敏, 赵子豪, 贺子阳, 李金泽, 李广顺, 郭成宇, 倪磊, 周振翔, 贺创业, 刘伏龙, 周小红, 柳敏良, 张玉虎, 王守宇, 王硕, 竺礼华 2024 原子核物理评论 41 244Google Scholar

    Hong R, Li C B, Li H D, Zheng Y, Wu X G, Li T X, Li Y Q, Wu H Y, Zheng M, Zhao Z H, He Z Y, Li J Z, Li G S, Guo C Y, Ni L, Zhou Z X, He C Y, Liu F L, Zhou X H, Liu M L, Zhang Y H, Wang S Y, Wang S, Zhu L H 2024 Nucl. Phys. Rev 41 244Google Scholar

    [24]

    Reese M, Gerl J, Golubev P, Pietralla N 2015 Nucl. Instrum. Methods Phys. Res. Sect. A 779 63Google Scholar

    [25]

    Tarasov O, Bazin D 2004 Nucl. Phys. A 746 411Google Scholar

    [26]

    Koning A J, Hilaire S, Duijvestijn M C 2023 Eur. Phys. J. A 59 131Google Scholar

    [27]

    Boutoux G 2011 Ph. D. Dissertation (Bordeaux: University of Bordeaux

    [28]

    Brun R, Rademakers F, 1997 Nucl. Instrum. Methods Phys. Res. Sect. A 389 81Google Scholar

    [29]

    Zhang J S 2002 Nucl. Sci. Eng. 142 207Google Scholar

    [30]

    Forssén C, Dietrich F S, Escher J, Hoffman R D, Kelley K 2007 Phys. Rev. C 75 055807Google Scholar

    [31]

    Younes W, Britt H. C 2003 Phys. Rev. C 67 024610Google Scholar

    [32]

    Galés S, Hourani E, Fortier S, Laurent H, Maison J M, Schapira J P 1977 Nucl. Phys. A 288 221Google Scholar

    [33]

    Hisamochi K, Iwamoto O, Kisanuki A, Budihardjo S, Widodo S, Nohtomi A, Uozumi Y, Sakae T, Matoba M 1993 Nucl. Phys. A 564 227Google Scholar

    [34]

    Duhamel-Chretien G, Perrin G, Perrin C, Comparat V V, Gerlic E, Galès S, Massolo C P 1991 Phys. Rev. C 43 1115

    [35]

    Duhamel G, Perrin G, Didelez J P, Gerlic E, Langevin-Joliot H, Guillot J, Van de Wiele J 1981 J. Phys. G: Nucl. Phys. 7 1415Google Scholar

    [36]

    Hilaire S, Lagrange C, Koning A J 2003 Ann. Phys. 306 209Google Scholar

  • [1] 谢金辰, 陶曦, 续瑞瑞, 田源, 邢康, 葛智刚, 牛一斐. 基于变分自编码器的伽马单中子出射反应截面实验数据离群点研究. 物理学报, doi: 10.7498/aps.74.20241775
    [2] 杨志刚, 刘颖超, 张仕青, 罗瑞鉴, 赵需谦, 连加荣, 屈军乐. 活细胞应激反应过程中线粒体和核仁微环境动力学的荧光寿命成像研究. 物理学报, doi: 10.7498/aps.73.20231990
    [3] 朱传新, 秦建国, 郑普, 蒋励, 朱通华, 鹿心鑫. 14 MeV附近191Ir(n,2n)190Ir反应截面实验研究. 物理学报, doi: 10.7498/aps.71.20220776
    [4] 王德鑫, 张苏雅拉吐, 蒋伟, 任杰, 王金成, 唐靖宇, 阮锡超, 王宏伟, 陈志强, 黄美容, 唐鑫, 胡新荣, 李鑫祥, 刘龙祥, 刘丙岩, 孙慧, 张岳, 郝子锐, 宋娜, 李雪, 牛丹丹, 利国, 蒙古夫. 不同厚度镥样品中子俘获反应实验研究. 物理学报, doi: 10.7498/aps.71.20212051
    [5] 张奇玮, 栾广源, 任杰, 阮锡超, 贺国珠, 鲍杰, 孙琪, 黄翰雄, 王朝辉, 顾旻皓, 余滔, 解立坤, 陈永浩, 安琪, 白怀勇, 鲍煜, 曹平, 陈昊磊, 陈琪萍, 陈裕凯, 陈朕, 崔增琪, 樊瑞睿, 封常青, 高可庆, 韩长材, 韩子杰, 何泳成, 洪杨, 黄蔚玲, 黄锡汝, 季筱璐, 吉旭阳, 蒋伟, 江浩雨, 姜智杰, 敬罕涛, 康玲, 康明涛, 李波, 李超, 李嘉雯, 李论, 李强, 李晓, 李样, 刘荣, 刘树彬, 刘星言, 穆奇丽, 宁常军, 齐斌斌, 任智洲, 宋英鹏, 宋朝晖, 孙虹, 孙康, 孙晓阳, 孙志嘉, 谭志新, 唐洪庆, 唐靖宇, 唐新懿, 田斌斌, 王丽娇, 王鹏程, 王琦, 王涛峰, 文杰, 温中伟, 吴青彪, 吴晓光, 吴煊, 羊奕伟, 易晗, 于莉, 于永积, 张国辉, 张林浩, 张显鹏, 张玉亮, 张志永, 赵豫斌, 周路平, 周祖英, 朱丹阳, 朱科军, 朱鹏, 朱兴华. 基于CSNS反角白光中子源的中子俘获反应截面测量技术研究. 物理学报, doi: 10.7498/aps.70.20210742
    [6] 冯松, 刘荣, 鹿心鑫, 羊奕伟, 王玫, 蒋励, 秦建国. 离线测量钍快中子裂变反应率方法. 物理学报, doi: 10.7498/aps.63.162501
    [7] 陈泽, 张小平, 杨洪应, 郑强, 陈娜娜, 支启军. 等待点N=82附近核素β-衰变寿命的研究. 物理学报, doi: 10.7498/aps.63.162301
    [8] 徐国亮, 刘培, 刘彦磊, 张琳, 刘玉芳. 准经典轨线法研究交换反应H(D)+SH/SD的动力学性质. 物理学报, doi: 10.7498/aps.62.223402
    [9] 羊奕伟, 刘荣, 严小松. 钍俘获反应率离线伽马测量方法. 物理学报, doi: 10.7498/aps.62.032801
    [10] 陈国云, 辛勇, 黄福成, 魏志勇, 雷升杰, 黄三玻, 朱立, 赵经武, 马加一. 用于反应堆中子/ 射线混合场测量的涂硼电离室性能. 物理学报, doi: 10.7498/aps.61.082901
    [11] 陈学文, 方祯云, 张家伟, 钟涛, 涂卫星. 标准模型中两类中性玻色子混合圈链图传播子的重整化及其e+e-→μ+μ-反应截面. 物理学报, doi: 10.7498/aps.60.021101
    [12] 潘 宇, 王凯俊, 方祯云, 汪先友, 彭庆军. 精确计算n-n重正化链图传播下n+n→2π0反应截面. 物理学报, doi: 10.7498/aps.57.4817
    [13] 黄明辉, 甘再国, 范红梅, 苏朋源, 马 龙, 周小红, 李君清. 超重核合成时的驱动势与热熔合反应截面. 物理学报, doi: 10.7498/aps.57.1569
    [14] 罗宇峰, 钟 澄, 张 莉, 严学俭, 李 劲, 蒋益明. 方块电阻法原位表征Cu薄膜氧化反应动力学规律. 物理学报, doi: 10.7498/aps.56.6722
    [15] 刘建业, 左 维, 李希国, 邢永忠. 中子晕核引起核反应中的同位旋效应. 物理学报, doi: 10.7498/aps.56.1339
    [16] 孙桂华, 杨向东. H+H2反应截面的全量子力学研究. 物理学报, doi: 10.7498/aps.51.506
    [17] 白海洋, 陈红, 张云, 王文魁. Fe-Ti多层调制膜固态反应扩散的动态原位法X射线衍射研究. 物理学报, doi: 10.7498/aps.42.1134
    [18] 姚立山, 靳玉玲, 蔡敦九. 14MeV中子(n,T)与(n,3He)反应截面的系统学研究. 物理学报, doi: 10.7498/aps.42.17
    [19] 潘正瑛, 周鹏. 表面氧化层对共振反应寿命测量影响的Monte-Carlo模拟. 物理学报, doi: 10.7498/aps.37.776
    [20] 金卫国, 赵国庆, 邵其鋆, 任月华, 吴向坚, 周筑颖. 平面阻塞效应测量Ep=1565keV时27Al(p,α)24Mg共振反应寿命. 物理学报, doi: 10.7498/aps.36.1564
计量
  • 文章访问数:  237
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-02-21
  • 修回日期:  2025-04-11
  • 上网日期:  2025-05-10

/

返回文章
返回