-
为适应自偏置环行器高频化与集成化的发展需求,六角铁氧体材料性能的提升至关重要。本研究采用固相反应法制备了La-Zn-Sc共取代的M型钡铁氧体(La0.3Ba0.7Fe10.9-xZn0.3ScxO19)。X射线衍射(XRD)分析表明,所有样品均成功形成单一M型磁铅石相。扫描电子显微镜(SEM)图像显示,经湿法择优取向烧结后,铁氧体颗粒呈现六角板状形貌,并沿c轴定向排列。基于XRD和SEM数据计算了样品的晶格参数与颗粒尺寸。磁性测量结果表明,Sc-La-Zn掺杂的M型铁氧体具有较高的饱和磁化强度(Ms > 60 emu/g)的同时,通过调控Sc掺杂量,使磁晶各向异性场在7000 ~ 10000 Oe范围内可调,且样品表现出较低的铁磁共振线宽(ΔH ≈ 260 Oe)。基于样品的磁性能参数,利用HFSS软件设计并仿真了三款自偏置环行器,其中心频率覆盖25 GHz至35 GHz,展现出较宽的频率调节范围。环行器的最低插入损耗小于0.5 dB,隔离度优于20 dB的带宽最高可达4.4 GHz。本研究对不同频段自偏置环行器的应用具有重要意义。
-
关键词:
- Sc-La-Zn 共掺杂 /
- M型钡铁氧体 /
- 磁性能 /
- 自偏置环形器
To meet the demands for miniaturization and higher operating frequencies in self biased circulators, improving the performance of hexaferrite materials is essential. In this work, La–Zn–Sc co substituted M type barium ferrites (La0.3Ba0.7Fe10.9-xZn0.3ScxO19) were prepared via solid state reaction. X ray diffraction (XRD) confirmed the formation of a single phase magnetoplumbite structure in all samples. Scanning electron microscopy (SEM) images revealed that the ferrite particles exhibit hexagonal platelet morphology and are aligned along the c axis after wet pressing and sintering under a magnetic field. Lattice parameters and particle sizes were calculated from the XRD and SEM data. Magnetic measurements indicate that the Sc–La–Zn substituted M type ferrites exhibit high saturation magnetization (Ms > 60 emu/g) while allowing the magnetocrystalline anisotropy field to be tuned between 7–10 kOe via controlled Sc doping. Moreover, a narrow ferromagnetic resonance linewidth (ΔH ≈ 260 Oe) was achieved. Based on the measured magnetic parameters, three self biased circulators operating at center frequencies from 25 GHz to 35 GHz were designed and simulated using HFSS, demonstrating a broad frequency tuning range. The circulators exhibit a minimum insertion loss below 0.5 dB and a maximum isolation bandwidth (isolation >20 dB) of up to 4.4 GHz. This study highlights the potential of these materials for self biased circulators covering different frequency bands. -
[1] Peral E, Im E, Wye L, Lee S, Tanelli S, Rahmat-Samii Y, Horst S, Hoffman J, Yun S H, Imken T, Hawkins D 2018 Proc. IEEE 106 404
[2] Zhang Q, Fan H, Qin Y, Zhou Y 2025 Sensors 25 4616
[3] Song, R., Wang, W., & Yu, W 2024 Sensors 24 5978.
[4] Patel V, Mittapally V, Nagaraju D, Madhukar H 2021 Proc. Int. Conf. Control Autom. Power Signal Process. 1
[5] Elliott J R 2020 Surv. Geophys. 41 1323
[6] Saraereh O A 2022 Comput. Syst. Sci. Eng. 43 413
[7] Singh C, Sharma C, Tripathi S, Sharma M, Agrawal A 2023 Wirel. Pers. Commun. 133 1547
[8] Harris V G, Sokolov A S 2018 J. Supercond. Nov. Magn. 32 97
[9] Liu Q, Li H, You X, Li C, Tan X, Wu C, Liang T, Lai Y 2024 J. Alloys Compd. 1008 176760
[10] Li X Y, Hou Y H, Chen X, Huang Y L, Li W, Tao X M 2025 Acta Physica Sinica 74 067501-1 (in Chinese) [李昕语, 侯育花, 陈璇, 黄有林, 李伟, 陶小马 2025 物理学报 74 067501-1]
[11] Yang J L, Liu K W, Shen D Z 2017 Chin. Phys. B 26 047308
[12] Jotania R 2014 AIP Conf. Proc. 1621 3
[13] Li Y, Liu Q, Qi M, Chen Y 2022 J. Electron. Mater. 52 523
[14] Lu S F, Liu Y, Yin Q, Chen J, Wu J, Li J, Zhang P, Chen Z C 2023 SSRN Electron. J.
[15] Jiang X, Jia H, Wu C, Yu Z, Luo H, Guo R, Li Z, Jiang Y, Nie J, Lan Z, Sun K 2020 J. Alloys Compd. 835 155202
[16] Peng L, Hu Y B, Guo C, Li L Z, Wang R, Hu Y, Tu X Q 2015 Chin. Phys. Lett. 32 017502
[17] Liu Q, Wu C, Wang Y, You X, Li J, Liu Y, Zhang H 2019 J. Magn. Magn. Mater. 475 223
[18] Zeina N, How H, Vittoria C, West R 1992 IEEE Trans. Magn. 28 3219
[19] Pope C G 1997 J. Chem. Educ. 74 129
[20] Liu X, Zhong W, Yang S, Yu Z, Gu B, Du Y 2002 J. Magn. Magn. Mater. 238 207
[21] Yang Y, Shao J, Wang F, Liu X, Huang D 2017 Appl. Phys. A 123 316
[22] Chen Y, Nedoroscik M J, Geiler A L, Vittoria C, Harris V G 2008 J. Am. Ceram. Soc. 91 2952
[23] Rezlescu N, Rezlescu E, Popa P D, Doroftei C, Ignat M 2014 Appl. Catal. B-Environ. 158-159 70
[24] Achari K M R, Ramachander R B 1987 Bull. Mater. Sci. 9 97
[25] Dawley J T, Clem P G 2002 Appl. Phys. Lett. 81 3028
[26] Erokhin S, Berkov D 2020 Phys. Status Solidi B 257 2000290
[27] Liu J, Zeng Y, Zhang X, Zhang M 2015 J. Magn. Magn. Mater. 382 188
[28] Hessien M M, El-Bagoury N, Mahmoud M H H, Alsawat M, Alanazi A K, Rashad M M 2020 J. Magn. Magn. Mater. 498 166187
[29] Mahmood S H, Dushaq G H, Bsoul I, et al 2014 J. Appl. Math. Phys. 02 77
[30] Manglam M K, Kumari S, Pradhan L K, Kumar S, Kar M 2020 Physica B 588 412200
[31] Kumar R K S, Manglam M K, Supriya S, Satpal H K 2019 J. Magn. Magn. Mater. 473 312
[32] Bosma H 1964 IEEE Trans. Microw. Theory Tech. 12 61
[33] Wu C J 2018 Ph. D. Dissertation (Chengdu: University of Electronic Science and Technology of China) (in Chinese) [邬传建 2018 博士学位论文 (成都: 电子科技大学)]
计量
- 文章访问数: 27
- PDF下载量: 1
- 被引次数: 0








下载: