-
相干X射线衍射成像方法是一种先进的成像技术, 分辨率可达纳米量级. 国际上大多数的同步辐射装置和自由电子激光装置都建立了该成像方法, 并有将其作为主要成像技术的趋势. 上海光源作为目前国内唯一的一台第三代同步辐射光源, 尚未建立基于硬X射线的相干衍射成像实验平台. 随着一批以波荡器为光源的光束线站投入使用, 使得该方法的建立成为了可能. 本文基于上海光源BL19U2生物小角散射线站, 通过有效的光路设计, 搭建了相干衍射实验平台, 在12 keV和13.5 keV能量点均获得了硬X射线相干光束, 并基于小孔衍射测量了入射光束的空间相干长度. 该平台支持常规和扫描相干衍射实验模式, 对小孔衍射图样及波带片扫描衍射图样实现了正确的相位重建, 证明了该平台初步具备开展硬X射线相干衍射成像实验的能力. 硬X射线相干衍射成像实验平台为国内首次建立, 将为国内该实验方法的发展和应用提供有效的软硬件支持.Coherent X-ray diffraction imaging (CDI) method is a powerful X-ray imaging technique with high resolution up to nanometer scale. Most of the synchrotron radiation facilities and free electron laser facilities are equipped with this state-of-the-art imaging technique and have made many outstanding achievements in multiple scientific areas. Up to now, although scanning CDI (ptychography) method based on a soft X-ray source has been opened to users, the hard X-ray CDI experimental platform has not been built at Shanghai Synchrotron Radiation Facility (SSRF) which can research some relatively thick specimens and easily extend to three-dimensional imaging. As some new beamlines with undulator source were put into operation recently, it is possible and feasible to build up the CDI experimental platform with hard X-ray. In this article, we report the hard X-ray CDI experimental platform development process and preliminary experimental results of coherent diffraction pattern and image reconstruction at SSRF. Based on the operating BL19U2 biological small-angle X-ray scattering (SAXS) beamline at SSRF, the hard X-ray coherent beam is obtained through effective optical path designation at 12 keV and 13.5 keV. The hard X-ray optimization includes tuning several slits, double crystal monochromator (DCM), horizontal deflection mirror, focusing mirror system and pinhole, etc. Furthermore, hard X-ray CDI experiments are conducted. The spatial coherent length of the incident beam is also measured from the pinhole diffraction pattern. This platform can provide both conventional mode and scanning mode (ptychography) for the coherent diffraction imaging method, and the correct image reconstruction from the experimental diffraction patterns proves that the platform has the experimental capability for hard X-ray CDI. In the conventional forward scattering CDI mode, coherent diffraction patterns of pinhole are collected and used to analyse the coherence property of the optimized X-ray beam. The structure of pinhole is also reconstructed from the diffraction pattern. In the scanning CDI mode, a zone plate is used as a sample. The central area of zone plate is reconstructed correctly. About 90 nm/pixel resolution of reconstruction is achieved which is extremely dependent on the X-ray flux density from the undulator source emission. Hard X-ray CDI experimental platform based on the synchrotron radiation facility is first built in China. It will provide effective software and hardware supporting for the development and application of hard X-ray CDI experiments in China in the future.
-
Keywords:
- synchrotron radiation /
- coherent diffraction imaging /
- coherence /
- phase retrieval
[1] Xu H J, Zhao Z T 2008 Nucl. Sci. Tech. 19 1Google Scholar
[2] Jiao Y, Xu G, Cui X H, Duan Z, Guo Y Y, He P, Ji D H, Li J Y, Li X Y, Meng C, Peng Y M, Tian S K, Wang J Q, Wang N, Wei Y Y, Xu H S, Yan F, Yu C H, Zhao Y L, Qin Q 2018 J. Synchrotron Radiat. 25 1611Google Scholar
[3] Hua W Q, Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Dong X H, Wang Y Z, Bian F G, Wang J 2019 J. Synchrotron Radiat. 26 619Google Scholar
[4] Mcneil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar
[5] Nugent K A 2010 Adv. Phys. 59 1Google Scholar
[6] 范家东, 江怀东 2012 物理学报 61 218702Google Scholar
Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar
[7] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 物理学报 60 028701Google Scholar
Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701Google Scholar
[8] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 物理学报 61 018701Google Scholar
Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701Google Scholar
[9] Miao J W, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar
[10] Shi X W, Burdet N, Chen B, Xiong G, Streubel R, Harder R, Robinson I K 2019 Appl. Phys. Res. 6 011306
[11] Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234Google Scholar
[12] Rodriguez J A, Xu R, Chen C C, Huang Z F, Jiang H D, Chen A L, Raines K S, Jr A P, Nam D, Wiegart L, Song C Y, Madsen A, Chushkin Y, Zontone F, Bradley P J, Miao J W 2015 IUCrJ 2 575Google Scholar
[13] Yang W G, Huang X J, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680Google Scholar
[14] Holler M, Sicairos M G, Tsai E H R, Dinapoli R, M, Müller E, Bunk O, Raabe J, Aeppli G 2017 Nature 543 402Google Scholar
[15] Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar
[16] Zhang X Y 2018 Synchrotron Radiation Applications (Singapore: World Scientific Hackensack) pp343−388
[17] Grübel G, Madsen A, Robert A (Borsali R, Pecora R eds) 2008 Soft Matter Characterization (Heidelberg: Springer Netherlands) pp953−995
[18] Sinha S K, Jiang Z, Lurio L B 2014 Adv. Mater. 26 7764Google Scholar
[19] 张明俊, 郭智, 邰仁忠, 张祥志, 罗豪甦 2015 物理学报 64 147801Google Scholar
Zhang M J, Guo Z, Tai R Z, Zhang X Z, Luo H S 2015 Acta Phys. Sin. 64 147801Google Scholar
[20] Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar
[21] Rau C, Wagner U, Pesic Z, Fanis A D 2011 Phys. Status Solidi A 208 2522Google Scholar
[22] Xu Z J, Wang C P, Liu H G, Tao X L, Tai R Z 2017 J. Phy. Conf. Ser. 849 012033Google Scholar
[23] Li N, Li X, Wang Y, Liu G, Zhou P, Wu H, Hong C, Bian F, Zhang R 2016 J. Appl. Crystallogr. 49 1428Google Scholar
[24] 玻恩M, 沃耳夫E 著 (杨葭荪 译)2009 光学原理: 光的传播、干涉和衍射的电磁理论(第7版) (北京: 电子工业出版社) 第459−525页
Born M, Wolf E (translated by Yang J S) 2009 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp459−525 (in Chinese)
[25] 徐朝银 著 2013 同步辐射光学与工程 (合肥: 中国科学技术大学出版社) 第24−37页
Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp24−37 (in Chinese)
[26] 王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒 2012 物理学报 61 144102Google Scholar
Wang H, Yan S, Yan F, Jiang S, Mao C W, Liang D X, Yang K, Li A G, Yu X H 2012 Acta Phys. Sin. 61 144102Google Scholar
[27] Tanaka T, Kitamura H 2001 J. Synchrotron Radiat. 8 1221Google Scholar
[28] Hua W Q, Bian F G, Song L, Li X H, Wang J 2013 Chin. Phys. C 37 068001Google Scholar
[29] Yu C J, Lee H C, Chan K, Cha W, Carnis J, Kim Y, Noh D Y, Kim H 2014 J. Synchrotron Radiat. 21 264Google Scholar
[30] Hua W Q, Zhou G Z, Wang Y Z, Zhou P, Yang S M, Peng C Q, Bian F G, Li X H, Wang J 2017 Chin. Opt. Lett. 15 033401Google Scholar
[31] Deng J J, Vine D J, Chen S, Jin Q L, Nashed Y S G, Peterka T, Vogt S, Jacobsen C 2017 Sci. Rep. 7 445Google Scholar
[32] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar
-
图 4 (a), (b)不同入射光束相干度下的针孔衍射图样; (c)水平和(d)垂直方向上的衍射强度分布(图(a), (b)中白色虚线位置); 强度分布均为对数显示
Fig. 4. (a), (b) Measured diffraction patterns of pinhole with incident beam of reduced coherence; diffracted intensity distribution in the horizontal (c) and vertical (d) direction along the dotted line profile in panel (a) and (b), and the intensity distribution are shown in log scale.
图 6 (a)探测器采集到的第441张衍射图; 根据衍射图重建波带片样品结构的(b)振幅和(c)相位信息; (d)波带片样品相应结构的电子显微镜图片; 根据衍射图重建的入射光束的(e)振幅和(f)相位信息
Fig. 6. (a) The 441st diffraction pattern collected by the detector; recovered (b) amplitude and (c) phase information of the sample structure of the Fresnel zone plate according to the diffraction patterns; (d) electron microscope image of the corresponding structures of the wave band specimens; reconstructed (e) amplitude and (f) phase information of the incident beam simultaneously according to the diffraction pattern.
表 1 国际上同步辐射相干散射(衍射)线站举例列表
Table 1. Well-known coherent scattering beamlines in the world.
光束线站 能量范围/keV 光斑尺寸/μm 相干通量 相干实验方法 NSLS 11-ID 6—16 3—10 5 × 1011 ph/s@9.65 keV CoSAXS, XPCS PETRA-III P10 5—20 4.5—40 3 × 109 ph/s CDI, Bragg CDI, XPCS SPring-8 29 XUL 4.5—18.7 ~1—20 ~109 ph/s CDI, Ptychography Diamond I13-1 6—35 1 × 1010 ph/s@8 keV CDI, Bragg CDI, Ptychography, XPCS APS 34-ID-C 5—15 ~0.7 5 × 109 ph/s@10 keV CoSAXS, Ptychography MAX IV CoSAXS 4—20 10 or 100 1.5 × 1012 ph/s@10 keV CoSAXS, XPCS SLS X12 SA 4.4—17.9 25 × 10 7 × 108 ph/s@6.2 keV CoSAXS PLS-II 9 C 5—15 < 300 1.7 × 1010 ph/s@10 keV CDI, Bragg CDI, XPCS TPS 25 A 5.5—20 1—10 1 × 1010 ph/s@6 keV CDI, XPCS 表 2 储存环流强为300 mA时, 波荡器不同参数下辐射出的能量、亮度、通量和相干通量
Table 2. Photon energy and highest brilliance/flux/coherent flux with corresponding undulator parameters (a target ring current of 300 mA is used).
光子能量/
keV谐波阶数 磁场/T K 亮度/
1018 flux·mm–2·mrad–2光通量/
1014 ph·s–1·0.1%BW–1相干光通量/
109 ph·s–1·0.1%BW–18 3 0.822 1.535 19.5 4.43 111 10 3 0.654 1.221 12.5 2.80 44.9 12 3 0.512 0.955 6.26 1.37 15.3 13.5 5 0.816 1.523 8.64 1.68 14.8 15 5 0.734 1.370 6.09 1.17 8.34 表 3 上海光源BL19U2光源点(12 keV时)及传播时的光束相干特性
Table 3. Beam parameters of BL19U2 (@12 keV) at the source and KB mirrors.
水平方向 垂直方向 光源点光斑尺寸 397 µm 26 µm 光源点发散度 78 µrad 23 µrad 光源点相干长度 0.48 µm 1.29 µm 光源点相干度 0.15% 7.59% KB镜处光斑尺寸 1073 µm 距离光源31.2 m 434 µm 距离光源点34 m KB镜处相干长度 3.36 µm 57.3 µm -
[1] Xu H J, Zhao Z T 2008 Nucl. Sci. Tech. 19 1Google Scholar
[2] Jiao Y, Xu G, Cui X H, Duan Z, Guo Y Y, He P, Ji D H, Li J Y, Li X Y, Meng C, Peng Y M, Tian S K, Wang J Q, Wang N, Wei Y Y, Xu H S, Yan F, Yu C H, Zhao Y L, Qin Q 2018 J. Synchrotron Radiat. 25 1611Google Scholar
[3] Hua W Q, Zhou G Z, Hu Z, Yang S M, Liao K L, Zhou P, Dong X H, Wang Y Z, Bian F G, Wang J 2019 J. Synchrotron Radiat. 26 619Google Scholar
[4] Mcneil B W J, Thompson N R 2010 Nat. Photon. 4 814Google Scholar
[5] Nugent K A 2010 Adv. Phys. 59 1Google Scholar
[6] 范家东, 江怀东 2012 物理学报 61 218702Google Scholar
Fan J D, Jiang H D 2012 Acta Phys. Sin. 61 218702Google Scholar
[7] 周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 物理学报 60 028701Google Scholar
Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701Google Scholar
[8] 周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 物理学报 61 018701Google Scholar
Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701Google Scholar
[9] Miao J W, Charalambous P, Kirz J, Sayre D 1999 Nature 400 342Google Scholar
[10] Shi X W, Burdet N, Chen B, Xiong G, Streubel R, Harder R, Robinson I K 2019 Appl. Phys. Res. 6 011306
[11] Jiang H D, Song C Y, Chen C C, Xu R, Raines K S, Fahimian B P, Lu C H, Lee T K, Nakashima A, Urano J, Ishikawa T, Tamano F, Miao J W 2010 Proc. Natl. Acad. Sci. USA 107 11234Google Scholar
[12] Rodriguez J A, Xu R, Chen C C, Huang Z F, Jiang H D, Chen A L, Raines K S, Jr A P, Nam D, Wiegart L, Song C Y, Madsen A, Chushkin Y, Zontone F, Bradley P J, Miao J W 2015 IUCrJ 2 575Google Scholar
[13] Yang W G, Huang X J, Harder R, Clark J N, Robinson I K, Mao H K 2013 Nat. Commun. 4 1680Google Scholar
[14] Holler M, Sicairos M G, Tsai E H R, Dinapoli R, M, Müller E, Bunk O, Raabe J, Aeppli G 2017 Nature 543 402Google Scholar
[15] Miao J W, Ishikawa T, Robinson I K, Murnane M M 2015 Science 348 530Google Scholar
[16] Zhang X Y 2018 Synchrotron Radiation Applications (Singapore: World Scientific Hackensack) pp343−388
[17] Grübel G, Madsen A, Robert A (Borsali R, Pecora R eds) 2008 Soft Matter Characterization (Heidelberg: Springer Netherlands) pp953−995
[18] Sinha S K, Jiang Z, Lurio L B 2014 Adv. Mater. 26 7764Google Scholar
[19] 张明俊, 郭智, 邰仁忠, 张祥志, 罗豪甦 2015 物理学报 64 147801Google Scholar
Zhang M J, Guo Z, Tai R Z, Zhang X Z, Luo H S 2015 Acta Phys. Sin. 64 147801Google Scholar
[20] Xu R, Salha S, Raines K S, Jiang H D, Chen C C, Takahashi Y, Kohmura Y, Nishino Y, Song C Y, Ishikawa T, Miao J W 2011 J. Synchrotron Radiat. 18 293Google Scholar
[21] Rau C, Wagner U, Pesic Z, Fanis A D 2011 Phys. Status Solidi A 208 2522Google Scholar
[22] Xu Z J, Wang C P, Liu H G, Tao X L, Tai R Z 2017 J. Phy. Conf. Ser. 849 012033Google Scholar
[23] Li N, Li X, Wang Y, Liu G, Zhou P, Wu H, Hong C, Bian F, Zhang R 2016 J. Appl. Crystallogr. 49 1428Google Scholar
[24] 玻恩M, 沃耳夫E 著 (杨葭荪 译)2009 光学原理: 光的传播、干涉和衍射的电磁理论(第7版) (北京: 电子工业出版社) 第459−525页
Born M, Wolf E (translated by Yang J S) 2009 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light (7th Ed.) (Beijing: Publishing House of Electronics Industry) pp459−525 (in Chinese)
[25] 徐朝银 著 2013 同步辐射光学与工程 (合肥: 中国科学技术大学出版社) 第24−37页
Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp24−37 (in Chinese)
[26] 王华, 闫帅, 闫芬, 蒋升, 毛成文, 梁东旭, 杨科, 李爱国, 余笑寒 2012 物理学报 61 144102Google Scholar
Wang H, Yan S, Yan F, Jiang S, Mao C W, Liang D X, Yang K, Li A G, Yu X H 2012 Acta Phys. Sin. 61 144102Google Scholar
[27] Tanaka T, Kitamura H 2001 J. Synchrotron Radiat. 8 1221Google Scholar
[28] Hua W Q, Bian F G, Song L, Li X H, Wang J 2013 Chin. Phys. C 37 068001Google Scholar
[29] Yu C J, Lee H C, Chan K, Cha W, Carnis J, Kim Y, Noh D Y, Kim H 2014 J. Synchrotron Radiat. 21 264Google Scholar
[30] Hua W Q, Zhou G Z, Wang Y Z, Zhou P, Yang S M, Peng C Q, Bian F G, Li X H, Wang J 2017 Chin. Opt. Lett. 15 033401Google Scholar
[31] Deng J J, Vine D J, Chen S, Jin Q L, Nashed Y S G, Peterka T, Vogt S, Jacobsen C 2017 Sci. Rep. 7 445Google Scholar
[32] Maiden A M, Rodenburg J M 2009 Ultramicroscopy 109 1256Google Scholar
计量
- 文章访问数: 15734
- PDF下载量: 528
- 被引次数: 0