搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

硅的间接跃迁双光子吸收系数谱

崔昊杨 李志锋 马法君 陈效双 陆卫

引用本文:
Citation:

硅的间接跃迁双光子吸收系数谱

崔昊杨, 李志锋, 马法君, 陈效双, 陆卫

Two-photon absorption coefficient spectra of indirect transitions in silicon

Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang
PDF
导出引用
  • 利用皮秒Nd:YAG脉冲激光器作为激发光源,测量出光子能量介于1.36 μm (0.912 eV)—1.80 μm (0.689 eV)之间的硅间接跃迁双光子吸收系数谱.尽管此波段范围内的激光光子能量小于硅间接带隙,但当激光辐照在硅基光电二极管受光面时,在二极管两电极端仍然探测到了显著的脉冲光伏信号.光伏信号峰值强度与入射光强呈二次幂函数关系,表明其是双光子吸收过程.采用pn结等效结电容充放电模型,将光伏响应信号峰值与入射光强相关联,从中提取出硅的间接跃迁双光子吸收系数,改变入射波长得到系数谱.研究表明:
    The two-photon absorption coefficient spectra of indirect transitions in silicon have been measured using a picosecond Nd:YAG pulsed laser pumped optical parametric generator, whose wavelength being tunable. By employing the pulsed laser with the photon energy less than the indirect energy gap of silicon, the photovoltaic response between two electrons of the silicon photovoltaic diode has been detected significantly. The peak intensity of the pulsed photovoltaic response shows a quadratic dependence on the incident intensity. This suggests a typical two photon absorption process. A relationship between the pulsed photovoltaic response and the incident intensity has been established with an equivalent RC circuit model to derive the two-photon absorption coefficient, and the spectra can also be obtained by turning the incident wavelengths. The results show that when the incident photon energy change from 0.689 eV to 0.912 eV, the two-photon absorption coefficient increase form 0.42 cm/GW to 1.17 cm/GW. The mechanism for the two-photon absorption coefficient increasing with the incident photon energy can be attributed to the electrons excited from valance band finding an increasing availability of conduction-band states as the photon energy increase from Eig/2 to near Eig. This photon frequency dependence of the two-photon absorption coefficient has been fairly interpreted by the Dinu model.
    • 基金项目: 上海市教育委员会科研创新基金(批准号:10YZ158)和上海高校选拔培养优秀青年教师科研专项基金(批准号:SDl08025)资助的课题.
    [1]

    Murayama M, Nakayama T 1994 Phys. Rev. B 49 5737

    [2]

    Yang G, Chen Z H 2007 Acta Phys. Sin. 56 1182 (in Chinese) [杨 光、陈正豪 2007 物理学报 56 1182]

    [3]

    Zhu L, Yang W G, Xu L L, Chen A D, Wang W, Cui Y P 2007 Acta Phys. Sin. 56 569 (in Chinese) [朱 利、杨文革、徐玲玲、陈安定、王 文、崔一平 2007 物理学报 56 569]

    [4]

    Mizrahi V, Delong K W, Stegeman G I, Saifi M A, Anderjco M J 1989 Opt. Lett. 14 1140

    [5]

    Yu B L, Pu H J, Wu X C, Zhang G L, Tang G Q, Chen W J, Zhu C S, Gan F X 1999 Acta Phys. Sin. 48 320 (in Chinese) [余保龙、卜宏建、吴小春、张桂兰、汤国庆、陈文驹、朱从善、干福熹 1999 物理学报 48 320]

    [6]

    Liu C H, Chen C Y, Ma B K 2002 Acta Phys. Sin. 51 2022 (in Chinese) [刘翠红、陈传誉、马本坤 2002 物理学报 51 2022]

    [7]

    Jiang J, Li N, Chen G B, Lu W, Wang M K, Yang X P, Wu G, Fan Y H, Li Y G, Yuan X Z 2003 Acta Phys. Sin. 52 1403 (in Chinese) [江 俊、李 宁、陈贵宾、陆 卫、王明凯、杨学平、吴 刚、范耀辉、李永贵、袁先漳 2003 物理学报 52 1403]

    [8]

    Tsang H K, Wong C S, Liang T K, Day I E, Roberts S W, Harpin A 2002 Appl. Phys. Lett. 80 416

    [9]

    Rieger G W, Virk K S, Young J F 2004 Appl. Phys. Lett. 84 900

    [10]

    Reitze D H, Zhang T R, Wood W M, Downer M C 1990 J. Opt. Soc. Am. B 7 84

    [11]

    Folliot H, Lynch M, Bradley A L, Dunbar L A, Hegarty J, Donegan J F, Barry L P, Roberts J S, Hill G 2002 Appl. Phys. Lett. 80 1328

    [12]

    Garcia H, Kalyanaraman R 2006 J. Phys. B: Mol. Opt. Phys. 39 2737

    [13]

    Miragliotta J, Wickenden D K 1996 Appl. Phys. Lett. 69 2095

    [14]

    Cui H Y, Li Z F, Liu Z L, Wang C, Chen X S, Hu X N, Ye Z H, Lu W 2008 Appl. Phys. Lett. 92 021128

    [15]

    Cui H Y, Li Z F, Li Y J, Liu Z L, Chen X S, Lu W, Ye Z H, Hu X N, Wang C 2008 Acta Phys. Sin. 57 238 (in Chinese) [崔昊杨、李志锋、李亚军、刘昭麟、陈效双、陆 卫、叶振华、胡晓宁、王 茺 2008 物理学报 57 238]

    [16]

    Dinu M, Quochi F, Garcia H 2003 Appl. Phys. Lett. 82 2954

    [17]

    Krishnamurthy S, Nashold K, Sher A 2000 Appl. Phys. Lett. 77 355

    [18]

    Dinu M 2003 IEEE J. Quantum Electronics. 39 1498

  • [1]

    Murayama M, Nakayama T 1994 Phys. Rev. B 49 5737

    [2]

    Yang G, Chen Z H 2007 Acta Phys. Sin. 56 1182 (in Chinese) [杨 光、陈正豪 2007 物理学报 56 1182]

    [3]

    Zhu L, Yang W G, Xu L L, Chen A D, Wang W, Cui Y P 2007 Acta Phys. Sin. 56 569 (in Chinese) [朱 利、杨文革、徐玲玲、陈安定、王 文、崔一平 2007 物理学报 56 569]

    [4]

    Mizrahi V, Delong K W, Stegeman G I, Saifi M A, Anderjco M J 1989 Opt. Lett. 14 1140

    [5]

    Yu B L, Pu H J, Wu X C, Zhang G L, Tang G Q, Chen W J, Zhu C S, Gan F X 1999 Acta Phys. Sin. 48 320 (in Chinese) [余保龙、卜宏建、吴小春、张桂兰、汤国庆、陈文驹、朱从善、干福熹 1999 物理学报 48 320]

    [6]

    Liu C H, Chen C Y, Ma B K 2002 Acta Phys. Sin. 51 2022 (in Chinese) [刘翠红、陈传誉、马本坤 2002 物理学报 51 2022]

    [7]

    Jiang J, Li N, Chen G B, Lu W, Wang M K, Yang X P, Wu G, Fan Y H, Li Y G, Yuan X Z 2003 Acta Phys. Sin. 52 1403 (in Chinese) [江 俊、李 宁、陈贵宾、陆 卫、王明凯、杨学平、吴 刚、范耀辉、李永贵、袁先漳 2003 物理学报 52 1403]

    [8]

    Tsang H K, Wong C S, Liang T K, Day I E, Roberts S W, Harpin A 2002 Appl. Phys. Lett. 80 416

    [9]

    Rieger G W, Virk K S, Young J F 2004 Appl. Phys. Lett. 84 900

    [10]

    Reitze D H, Zhang T R, Wood W M, Downer M C 1990 J. Opt. Soc. Am. B 7 84

    [11]

    Folliot H, Lynch M, Bradley A L, Dunbar L A, Hegarty J, Donegan J F, Barry L P, Roberts J S, Hill G 2002 Appl. Phys. Lett. 80 1328

    [12]

    Garcia H, Kalyanaraman R 2006 J. Phys. B: Mol. Opt. Phys. 39 2737

    [13]

    Miragliotta J, Wickenden D K 1996 Appl. Phys. Lett. 69 2095

    [14]

    Cui H Y, Li Z F, Liu Z L, Wang C, Chen X S, Hu X N, Ye Z H, Lu W 2008 Appl. Phys. Lett. 92 021128

    [15]

    Cui H Y, Li Z F, Li Y J, Liu Z L, Chen X S, Lu W, Ye Z H, Hu X N, Wang C 2008 Acta Phys. Sin. 57 238 (in Chinese) [崔昊杨、李志锋、李亚军、刘昭麟、陈效双、陆 卫、叶振华、胡晓宁、王 茺 2008 物理学报 57 238]

    [16]

    Dinu M, Quochi F, Garcia H 2003 Appl. Phys. Lett. 82 2954

    [17]

    Krishnamurthy S, Nashold K, Sher A 2000 Appl. Phys. Lett. 77 355

    [18]

    Dinu M 2003 IEEE J. Quantum Electronics. 39 1498

  • [1] 方宇, 吴幸智, 陈永强, 杨俊义, 宋瑛林. Ge掺杂GaN晶体双光子诱导超快载流子动力学的飞秒瞬态吸收光谱研究. 物理学报, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] 赵珂, 宋军, 张瀚. 给体位置和数目对四苯基乙烯衍生物双光子吸收性质的影响. 物理学报, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] 齐俊杰, 徐旻轩, 胡小峰, 张跃. 一维纳米氧化锌自驱动紫外探测器的构建与性能研究. 物理学报, 2015, 64(17): 172901. doi: 10.7498/aps.64.172901
    [4] 杨哲, 张祥, 肖思, 何军, 顾兵. 双光子激发ZnSe自由载流子超快动力学研究. 物理学报, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [5] 武香莲, 赵珂, 贾海洪, 王富青. 以二乙烯硫/砜基为中心的新型电荷转移分子双光子吸收特性. 物理学报, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [6] 陈东海, 杨谋, 段后建, 王瑞强. 自旋轨道耦合作用下石墨烯pn结的电子输运性质. 物理学报, 2015, 64(9): 097201. doi: 10.7498/aps.64.097201
    [7] 贾克宁, 刘中波, 梁颖, 仝殿民, 樊锡君. Y型四能级系统中Doppler展宽对VIC相关的双光子吸收的影响. 物理学报, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [8] 孙鹏, 杜磊, 何亮, 陈文豪, 刘玉栋, 赵瑛. 基于1/f 噪声变化的pn结二极管辐射效应退化机理研究. 物理学报, 2012, 61(12): 127808. doi: 10.7498/aps.61.127808
    [9] 孙元红, 王传奎. 新型多共轭链有机分子双光子吸收特性的理论研究. 物理学报, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [10] 苗泉, 赵鹏, 孙玉萍, 刘纪彩, 王传奎. 超短脉冲激光在DBASVP分子中传播时的双光子面积演化和光限幅效应. 物理学报, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [11] 孙玉萍, 刘纪彩, 王传奎. 含时电离对飞秒脉冲激光在强双光子吸收介质中传播特性和光限幅行为的影响. 物理学报, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [12] 崔昊杨, 李志锋, 李亚军, 刘昭麟, 陈效双, 陆 卫, 叶振华, 胡晓宁, 王 茺. 双光子吸收的Franz-Keldysh效应. 物理学报, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] 黄晓明, 陶丽敏, 郭雅慧, 高 云, 王传奎. 一种新型双共轭链分子非线性光学性质的理论研究. 物理学报, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [14] 李成斌, 贾天卿, 孙海轶, 李晓溪, 徐世珍, 冯东海, 王晓峰, 葛晓春, 徐至展. 飞秒激光对氟化镁烧蚀机理研究. 物理学报, 2006, 55(1): 217-220. doi: 10.7498/aps.55.217
    [15] 赵 珂, 孙元红, 王传奎, 罗 毅, 张 献, 于晓强, 蒋民华. 1,4-二甲氧基-2,5-二乙烯基苯系列衍生物的双光子吸收截面. 物理学报, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] 苏 燕, 王传奎, 王彦华, 陶丽敏. 二苯乙烯衍生物分子双光子吸收截面:官能团对称性的影响. 物理学报, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] 江 俊, 李 宁, 陈贵宾, 陆 卫, 王明凯, 杨学平, 吴 刚, 范耀辉, 李永贵, 袁先漳. FEL诱导半导体材料非线性光吸收. 物理学报, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] 张衍亮, 江 丽, 钮月萍, 孙真荣, 丁良恩, 王祖赓. Na2中由一对耦合能级相干叠加导致的双光子吸收的干涉增强效应. 物理学报, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [19] 何国华, 张俊祥, 叶莉华, 崔一平, 李振华, 来建成, 贺安之. 一种新型有机染料的宽带双光子吸收和光限幅特性的研究. 物理学报, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [20] 贾天卿, 陈 鸿, 吴 翔. 导带电子的光吸收及其对材料破坏过程的影响. 物理学报, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
计量
  • 文章访问数:  7381
  • PDF下载量:  928
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-07-18
  • 修回日期:  2010-04-19
  • 刊出日期:  2010-05-05

硅的间接跃迁双光子吸收系数谱

  • 1. (1)上海电力学院计算机与信息工程学院,上海 200090,中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083; (2)中国科学院上海技术物理研究所红外物理国家重点实验室,上海 200083
    基金项目: 上海市教育委员会科研创新基金(批准号:10YZ158)和上海高校选拔培养优秀青年教师科研专项基金(批准号:SDl08025)资助的课题.

摘要: 利用皮秒Nd:YAG脉冲激光器作为激发光源,测量出光子能量介于1.36 μm (0.912 eV)—1.80 μm (0.689 eV)之间的硅间接跃迁双光子吸收系数谱.尽管此波段范围内的激光光子能量小于硅间接带隙,但当激光辐照在硅基光电二极管受光面时,在二极管两电极端仍然探测到了显著的脉冲光伏信号.光伏信号峰值强度与入射光强呈二次幂函数关系,表明其是双光子吸收过程.采用pn结等效结电容充放电模型,将光伏响应信号峰值与入射光强相关联,从中提取出硅的间接跃迁双光子吸收系数,改变入射波长得到系数谱.研究表明:

English Abstract

参考文献 (18)

目录

    /

    返回文章
    返回