搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能

向军 宋福展 沈湘黔 褚艳秋

引用本文:
Citation:

一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能

向军, 宋福展, 沈湘黔, 褚艳秋

Preparation of one-dimensional Ni0.5Zn0.5Fe2O4/SiO2 composite nanostructures and their magnetic properties

Xiang Jun, Song Fu-Zhan, Shen Xiang-Qian, Chu Yan-Qiu
PDF
导出引用
  • 采用溶胶-凝胶法结合静电纺丝技术制备了Ni0.5Zn0.5Fe2O4/SiO2复合纳米纤维.利用热重-差热分析、X射线衍射、场发射扫描电镜、高分辨透射电镜和振动样品磁强计研究了前驱体纤维的热分解及相转化过程以及焙烧温度和SiO2含量对目标纳米纤维的相组成、微观结构、形貌及磁性能的影响.结果表明,在450 ℃焙烧时,立方尖晶石结构已基本形成.随着焙烧温度由450 ℃升高到100
    The Ni0.5Zn0.5Fe2O4/SiO2 composite nanofibers were prepared using sol-gel process combined with electrospinning. The thermal decomposition and phase inversion process of precursor nanofibers and the effects of calcination temperature and SiO2 content on the phase composition, microstructure, morphology and magnetic property of the resulting nanofibers were studied by means of thermogravimetric and differential thermal analysis, X-ray diffraction, field emission scanning electron microscopy, high resolution transmission electron microscopy and vibrating sample magnetometer. The experimental results show that the cubic spinel structure is basically formed when the precursor nanofibers are calcined at 450 ℃ for 2 h. The average grain size of Ni0.5Zn0.5Fe2O4 contained in the composite nanofibers with 10 % SiO2 and their specific saturation magnetization and coercivity increase with increasing calcination temperature. Amorphous SiO2 additive can effectively restrain the growth of Ni0.5Zn0.5Fe2O4 nanocrystals. As a result, with SiO2 content increasing from 0 to 20 % , the average grain size of Ni0.5Zn0.5Fe2O4 in the prepared Ni0.5Zn0.5Fe2O4/SiO2 composite nanofibers calcined at 900 ℃ for 2 h decreases from 81.6 to 13.3 nm, and the specific saturation magnetization of these samples monotonically decreases, whereas the coercivity initially increases and then decreases due to the change of magnetic domain structure from multi-domain to single-domain along with the reduction in grain size. In addition, with the increase of SiO2 content, the diameter of the as-prepared Ni0.5Zn0.5Fe2O4/SiO2 composite nanofibers gradually increases and the surface becomes smooth.
    • 基金项目: 国家自然科学基金(批准号: 50674048)、 江苏省研究生培养创新工程(批准号: CX09B-192Z)和江苏科技大学青年骨干教师支持计划资助的课题.
    [1]

    Dasgupta S, Das J, Eckert J, Manna I 2006 J. Magn. Magn. Mater. 306 9

    [2]

    Gul I H, Ahmed W, Maqsood A 2008 J. Magn. Magn. Mater. 320 270

    [3]

    Liu Y, Qin T 2007 Chin. Phys. 16 3837

    [4]

    He X H, Song G S, Zhu J H 2005 Mater. Lett. 59 1941

    [5]

    Yang Z H, Gong Z Q, Li H X, Ma Y T, Yang Y F 2006 J. Cent. South Univ. Technol. 13 618

    [6]

    Azadmanjiri J 2008 Mater. Chem. Phys. 109 109

    [7]

    Stefanescu M, Stoia M, Caizer C, Stefanescu O 2009 Mater. Chem. Phys. 113 342

    [8]

    Wu K H, Huang W C, Wang G P, Wu T R 2005 Mater. Res. Bull. 40 1822

    [9]

    Stefanescu M, Caizer C, Stoia M, Stefanescu O 2006 Acta Mater. 54 1248

    [10]

    Wu K H, Chang Y C, Chang T C, Chiu Y S, Wu T R 2004 J. Magn. Magn. Mater. 283 380

    [11]

    He X H, Zhang Q Q, Ling Z Y 2003 Mater. Lett. 57 3031

    [12]

    Han M G, Liang D F, Deng L J 2007 Appl. Phys. Lett. 90 192507

    [13]

    Liu M, Li X, Imrane H, Chen Y J, Goodrich T, Cai Z H, Ziemer K S, Huang J Y, Sun N X 2007 Appl. Phys. Lett. 90 152501

    [14]

    Liu J R, Itoh M, Terada M, Horikawa T, Machida K I 2007 Appl. Phys. Lett. 91 093101

    [15]

    Tian F, Chen J, Zhu J, Wei D 2008 J. Appl. Phys. 103 013901

    [16]

    Yang J B, Xu H, You S X, Zhou X D, Wang C S, Yelon W B, James W J 2006 J. Appl. Phys. 99 08Q507

    [17]

    Li D, McCann J T, Xia Y N 2006 J. Am. Ceram. Soc. 89 1861

    [18]

    Xiang J, Shen X Q, Song F Z, Liu M Q 2009 Chin. Phys. B 18 4960

    [19]

    Stoner E C, Wohlfarth E P 1991 IEEE Trans. Magn. 27 3475

    [20]

    Qing S, Zhang Z J 2004 J. Am. Chem. Soc. 126 6163

    [21]

    Zhang B J, Hua J, Liu M, Xu S C, Feng M, Li H B 2008 J. Chin. Ceram. Soc. 36 292 (in Chinese)[张伯军、华 杰、刘 梅、徐仕翀、冯 明、李海波 2008 硅酸盐学报 36 292]

    [22]

    Zhao L J,Yang H, Cui Y M,Zhao X P, Feng S H 2007 J. Mater. Sci. 42 4110

    [23]

    Vestal C R, Zhang Z J 2003 Nano Lett. 3 1740

  • [1]

    Dasgupta S, Das J, Eckert J, Manna I 2006 J. Magn. Magn. Mater. 306 9

    [2]

    Gul I H, Ahmed W, Maqsood A 2008 J. Magn. Magn. Mater. 320 270

    [3]

    Liu Y, Qin T 2007 Chin. Phys. 16 3837

    [4]

    He X H, Song G S, Zhu J H 2005 Mater. Lett. 59 1941

    [5]

    Yang Z H, Gong Z Q, Li H X, Ma Y T, Yang Y F 2006 J. Cent. South Univ. Technol. 13 618

    [6]

    Azadmanjiri J 2008 Mater. Chem. Phys. 109 109

    [7]

    Stefanescu M, Stoia M, Caizer C, Stefanescu O 2009 Mater. Chem. Phys. 113 342

    [8]

    Wu K H, Huang W C, Wang G P, Wu T R 2005 Mater. Res. Bull. 40 1822

    [9]

    Stefanescu M, Caizer C, Stoia M, Stefanescu O 2006 Acta Mater. 54 1248

    [10]

    Wu K H, Chang Y C, Chang T C, Chiu Y S, Wu T R 2004 J. Magn. Magn. Mater. 283 380

    [11]

    He X H, Zhang Q Q, Ling Z Y 2003 Mater. Lett. 57 3031

    [12]

    Han M G, Liang D F, Deng L J 2007 Appl. Phys. Lett. 90 192507

    [13]

    Liu M, Li X, Imrane H, Chen Y J, Goodrich T, Cai Z H, Ziemer K S, Huang J Y, Sun N X 2007 Appl. Phys. Lett. 90 152501

    [14]

    Liu J R, Itoh M, Terada M, Horikawa T, Machida K I 2007 Appl. Phys. Lett. 91 093101

    [15]

    Tian F, Chen J, Zhu J, Wei D 2008 J. Appl. Phys. 103 013901

    [16]

    Yang J B, Xu H, You S X, Zhou X D, Wang C S, Yelon W B, James W J 2006 J. Appl. Phys. 99 08Q507

    [17]

    Li D, McCann J T, Xia Y N 2006 J. Am. Ceram. Soc. 89 1861

    [18]

    Xiang J, Shen X Q, Song F Z, Liu M Q 2009 Chin. Phys. B 18 4960

    [19]

    Stoner E C, Wohlfarth E P 1991 IEEE Trans. Magn. 27 3475

    [20]

    Qing S, Zhang Z J 2004 J. Am. Chem. Soc. 126 6163

    [21]

    Zhang B J, Hua J, Liu M, Xu S C, Feng M, Li H B 2008 J. Chin. Ceram. Soc. 36 292 (in Chinese)[张伯军、华 杰、刘 梅、徐仕翀、冯 明、李海波 2008 硅酸盐学报 36 292]

    [22]

    Zhao L J,Yang H, Cui Y M,Zhao X P, Feng S H 2007 J. Mater. Sci. 42 4110

    [23]

    Vestal C R, Zhang Z J 2003 Nano Lett. 3 1740

  • [1] 陈波, 杨詹詹, 王玉楹, 王寅岗. 退火时间对Fe80Si9B10Cu1非晶合金纳米尺度结构不均匀性和磁性能的影响. 物理学报, 2022, 71(15): 156102. doi: 10.7498/aps.71.20220446
    [2] 熊政伟, 杨江, 王雨, 杨陆, 管弦, 曹林洪, 王进, 高志鹏. FeNiMo/SiO2复合粉芯的制备与软磁性能调控. 物理学报, 2022, 71(15): 157502. doi: 10.7498/aps.71.20212317
    [3] 白静, 王晓书, 俎启睿, 赵骧, 左良. Ni-X-In(X=Mn,Fe和Co)合金的缺陷稳定性和磁性能的第一性原理研究. 物理学报, 2016, 65(9): 096103. doi: 10.7498/aps.65.096103
    [4] 孙志刚, 庞雨雨, 胡靖华, 何雄, 李月仇. 紫外光辐照对TiO2纳米线电输运性能的影响及磁阻效应研究. 物理学报, 2016, 65(9): 097301. doi: 10.7498/aps.65.097301
    [5] 胡亚亚, 朱媛媛, 周贝贝, 刘硕, 刘雍, 熊锐, 石兢. R型铁氧体BaFe4-xTi2+xO11的化学组态以及磁性行为的研究. 物理学报, 2015, 64(11): 117501. doi: 10.7498/aps.64.117501
    [6] 曹永泽, 王强, 李国建, 马永会, 隋旭东, 赫冀成. 强磁场对不同厚度Fe-Ni纳米多晶薄膜的生长过程及磁性能的影响. 物理学报, 2015, 64(6): 067502. doi: 10.7498/aps.64.067502
    [7] 侯育花, 黄有林, 刘仲武, 曾德长. 稀土掺杂对钴铁氧体电子结构和磁性能影响的理论研究. 物理学报, 2015, 64(3): 037501. doi: 10.7498/aps.64.037501
    [8] 曹永泽, 李国建, 王强, 马永会, 王慧敏, 赫冀成. 强磁场对不同厚度Fe80Ni20薄膜的微观结构及磁性能的影响. 物理学报, 2013, 62(22): 227501. doi: 10.7498/aps.62.227501
    [9] 黄有林, 侯育花, 赵宇军, 刘仲武, 曾德长, 马胜灿. 应变对钴铁氧体电子结构和磁性能影响的第一性原理研究. 物理学报, 2013, 62(16): 167502. doi: 10.7498/aps.62.167502
    [10] 魏杰, 陈彦均, 徐卓. 多铁性BiFeO3纳米颗粒的尺寸依赖磁性能研究. 物理学报, 2012, 61(5): 057502. doi: 10.7498/aps.61.057502
    [11] 张明琪, 王育华, 董鹏玉, 张佳. 静电纺丝法制备Bi2Fe4O9及其磁学性能的研究. 物理学报, 2012, 61(23): 238102. doi: 10.7498/aps.61.238102
    [12] 胡玉平, 平凯斌, 闫志杰, 杨雯, 宫长伟. Finemet合金析出相-Fe(Si)结构与磁性的第一性原理计算. 物理学报, 2011, 60(10): 107504. doi: 10.7498/aps.60.107504
    [13] 李姝丽, 张建民. Ni原子链填充碳纳米管的能量、电子结构和磁性的第一性原理计算. 物理学报, 2011, 60(7): 078801. doi: 10.7498/aps.60.078801
    [14] 易勇, 丁志杰, 李恺, 唐永建, 罗江山. Ni4NdB电子结构和磁性能第一性原理研究. 物理学报, 2011, 60(9): 097503. doi: 10.7498/aps.60.097503
    [15] 易勇, 李恺, 丁志杰, 易早, 罗江山, 唐永建. Ni4PrB的电子结构和磁性能研究. 物理学报, 2011, 60(10): 107502. doi: 10.7498/aps.60.107502
    [16] 海阔, 唐东升, 袁华军, 彭跃华, 罗志华, 刘红霞, 陈亚琦, 余芳, 羊亿. 大面积α-Fe2O3纳米线及纳米带阵列的制备研究. 物理学报, 2009, 58(2): 1120-1125. doi: 10.7498/aps.58.1120
    [17] 李岫梅, 刘 涛, 郭朝晖, 朱明刚, 李 卫. 稀土含量对速凝工艺制备(Nd,Dy)-(Fe,Al)-B合金结构和磁性能的影响. 物理学报, 2008, 57(6): 3823-3827. doi: 10.7498/aps.57.3823
    [18] 杨 白, 沈保根, 赵同云, 孙继荣. 纳米晶复合Pr2Fe14B/α-Fe快淬薄带的织构与磁性. 物理学报, 2007, 56(6): 3527-3532. doi: 10.7498/aps.56.3527
    [19] 李 健, 宋功保, 王美丽, 张宝述. Ti1-xCrxO2±δ体系的相关系、晶体结构和磁性能研究. 物理学报, 2007, 56(6): 3379-3387. doi: 10.7498/aps.56.3379
    [20] 朱明刚, 李卫, 董生智, 李岫梅. Ga替代对纳米晶Nd(Fe,Co)B黏结磁体磁性能的影响. 物理学报, 2001, 50(8): 1600-1604. doi: 10.7498/aps.50.1600
计量
  • 文章访问数:  5239
  • PDF下载量:  1207
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-09-25
  • 修回日期:  2009-11-25
  • 刊出日期:  2010-07-15

一维Ni0.5Zn0.5Fe2O4/SiO2复合纳米结构的制备及其磁性能

  • 1. (1)江苏大学材料科学与工程学院,镇江 212013; (2)江苏科技大学数理学院,镇江 212003; (3)江苏科技大学数理学院,镇江 212003; 江苏大学材料科学与工程学院,镇江 212013
    基金项目: 国家自然科学基金(批准号: 50674048)、 江苏省研究生培养创新工程(批准号: CX09B-192Z)和江苏科技大学青年骨干教师支持计划资助的课题.

摘要: 采用溶胶-凝胶法结合静电纺丝技术制备了Ni0.5Zn0.5Fe2O4/SiO2复合纳米纤维.利用热重-差热分析、X射线衍射、场发射扫描电镜、高分辨透射电镜和振动样品磁强计研究了前驱体纤维的热分解及相转化过程以及焙烧温度和SiO2含量对目标纳米纤维的相组成、微观结构、形貌及磁性能的影响.结果表明,在450 ℃焙烧时,立方尖晶石结构已基本形成.随着焙烧温度由450 ℃升高到100

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回