搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准全向平板超材料吸波体的设计

顾超 屈绍波 裴志斌 徐卓 刘嘉 顾巍

引用本文:
Citation:

准全向平板超材料吸波体的设计

顾超, 屈绍波, 裴志斌, 徐卓, 刘嘉, 顾巍

The design of a quasi-omnidirectional tabulate metamaterial absorber

Gu Chao, Qu Shao-Bo, Pei zhi-Bin, Gu Wei, Liu Jia, Xu Zhuo
PDF
导出引用
  • 本文设计了一种具有准全向吸波特性的平板超材料吸波体,其准全向吸波特性是由超材料吸波单元的双面吸波、极化不敏感和宽入射角实现的.理论分析和仿真结果表明:该吸波体在6.18 GHz的确有一个双面吸波的吸收点,且吸收率对极化角和入射角均不敏感.提取的等效阻抗表明可以调节超材料的电磁响应使其在吸收频率处与自由空间阻抗匹配来抑制反射.仿真的能量损耗分布表明:该吸波体对电磁波的吸收主要源于基板的介质损耗;采用两种不同介质基板的设计可使前吸波体与后吸波体的耦合度明显降低、抑制耦合所导致的传输.该吸波体可能在许多领域具有
    We report the design of a quasi-omnidirectional tabulate metamaterial absorber, which is substantiated on the double-faced absorbing, polarization-insensitive and wide-angle property of the metamaterial cell. Both theoretical and simulated results reveal that our absorber surely has a distinct absorption point with double-faced absorbing property near 6.18 GHz, which is not influenced significantly by the polarization angle and the angle of incidence. The retrieved impedance indicates the electromagnetic resonance of the metamaterial could be tuned to match approximatively the impedance of the free space to suppress the reflectance at the absorption frequency. The distributions of the power loss indicates the strong absorption is mainly due to dielectric loss of the substrates and the design of adopting two different substrates could make the coupling of the front absorber and the back absorber depressed, which effectively suppresses the transmission caused by the coupling. This metamaterial absorber may have applications in many scientific and technological areas.
    • 基金项目: 国家自然科学基金(批准号:60871027, 60901029, 61071058),国家重点基础研究发展计划(批准号:2009CB613306)资助的课题.
    [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [5]

    Pendry J B, Holden A J, Robbins D J, Stewart WJ 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [6]

    Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J, Hajnal J V 2001 Science 291 849

    [7]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [8]

    Zhang S, Qu S B, Ma H, Xie F, Xu Z 2009 Acta Phys. Sin. 58 3961 (in Chinese) [张 松、屈绍波、马 华、谢 峰、徐 卓 2009 物理学报 58 3961]

    [9]

    Gokkavas M, Guven K, Bulu I, Aydin K, Penciu R S, Kafesaki M, Soukoulis C M, Ozbay E 2006 Phys. Rev. B 73 193103

    [10]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [11]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351

    [12]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [13]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [14]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [15]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express. 16 7181

    [16]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [17]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

  • [1]

    Veselago V G 1968 Sov. Phys. Usp. 10 509

    [2]

    Shelby R A, Smith D R, Schultz S 2001 Science 292 77

    [3]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977

    [4]

    Pendry J B, Holden A J, Stewart W J, Youngs I 1996 Phys. Rev. Lett. 76 4773

    [5]

    Pendry J B, Holden A J, Robbins D J, Stewart WJ 1999 IEEE Trans. Microwave Theory Tech. 47 2075

    [6]

    Wiltshire M C K, Pendry J B, Young I R, Larkman D J, Gilderdale D J, Hajnal J V 2001 Science 291 849

    [7]

    Smith D R, Padilla W J, Vier D C, Nemat-Nasser S C, Schultz S 2000 Phys. Rev. Lett. 84 4184

    [8]

    Zhang S, Qu S B, Ma H, Xie F, Xu Z 2009 Acta Phys. Sin. 58 3961 (in Chinese) [张 松、屈绍波、马 华、谢 峰、徐 卓 2009 物理学报 58 3961]

    [9]

    Gokkavas M, Guven K, Bulu I, Aydin K, Penciu R S, Kafesaki M, Soukoulis C M, Ozbay E 2006 Phys. Rev. B 73 193103

    [10]

    Yen T J, Padilla W J, Fang N, Vier D C, Smith D R, Pendry J B, Basov D N, Zhang X 2004 Science 303 1494

    [11]

    Linden S, Enkrich C, Wegener M, Zhou J F, Koschny T, Soukoulis C M 2004 Science 306 1351

    [12]

    Zhang S, Fan W, Panoiu N C, Malloy K J, Osgood R M, Brueck S R J 2005 Phys. Rev. Lett. 95 137404

    [13]

    Dolling G, Wegener M, Soukoulis C M, Linden S 2007 Opt. Lett. 32 53

    [14]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [15]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express. 16 7181

    [16]

    Tao H, Bingham C M, Strikwerda A C, Pilon D, Shrekenhamer D, Landy N I, Fan K, Zhang X, Padilla W J, Averitt R D 2008 Phys. Rev. B 78 241103(R)

    [17]

    Landy N I, Bingham C M, Tyler T, Jokerst N, Smith D R, Padilla W J 2009 Phys. Rev. B 79 125104

  • [1] 王朝辉, 李勇祥, 朱帅. 基于超表面的旋向选择吸波体. 物理学报, 2020, 69(23): 234103. doi: 10.7498/aps.69.20200511
    [2] 周仕浩, 房欣宇, 李猛猛, 俞叶峰, 陈如山. S/X双频带吸波实时可调的吸波器. 物理学报, 2020, 69(20): 204101. doi: 10.7498/aps.69.20200606
    [3] 吴雨明, 丁霄, 王任, 王秉中. 基于等效介质原理的宽角超材料吸波体的理论分析. 物理学报, 2020, 69(5): 054202. doi: 10.7498/aps.69.20191732
    [4] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计. 物理学报, 2020, 69(22): 224201. doi: 10.7498/aps.69.20201488
    [5] 吴雨明, 王任, 丁霄, 王秉中. 基于等效介质原理的宽角超材料吸波体设计*. 物理学报, 2020, (): . doi: 10.7498/aps.69.20201448
    [6] 莫漫漫, 马武伟, 庞永强, 陈润华, 张笑梅, 柳兆堂, 李想, 郭万涛. 基于拓扑优化设计的宽频吸波复合材料. 物理学报, 2018, 67(21): 217801. doi: 10.7498/aps.67.20181170
    [7] 刘桐君, 习翔, 令永红, 孙雅丽, 李志伟, 黄黎蓉. 宽入射角度偏振不敏感高效异常反射梯度超表面. 物理学报, 2015, 64(23): 237802. doi: 10.7498/aps.64.237802
    [8] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [9] 王丛屹, 徐成, 伍瑞新. 用最小结构单元频率选择表面实现大入射角宽频带的透波材料. 物理学报, 2014, 63(13): 137803. doi: 10.7498/aps.63.137803
    [10] 邹涛波, 胡放荣, 肖靖, 张隆辉, 刘芳, 陈涛, 牛军浩, 熊显名. 基于超材料的偏振不敏感太赫兹宽带吸波体设计. 物理学报, 2014, 63(17): 178103. doi: 10.7498/aps.63.178103
    [11] 李思佳, 曹祥玉, 高军, 刘涛, 杨欢欢, 李文强. 宽带超薄完美吸波体设计及在圆极化倾斜波束天线雷达散射截面缩减中的应用研究. 物理学报, 2013, 62(12): 124101. doi: 10.7498/aps.62.124101
    [12] 鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐. 极化无关双向吸收超材料吸波体的仿真与实验验证. 物理学报, 2013, 62(1): 013701. doi: 10.7498/aps.62.013701
    [13] 鲁磊, 屈绍波, 马华, 余斐, 夏颂, 徐卓, 柏鹏. 基于电磁谐振的极化无关透射吸收超材料吸波体. 物理学报, 2013, 62(10): 104102. doi: 10.7498/aps.62.104102
    [14] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证. 物理学报, 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [15] 洪亮, 杨陈楹, 沈伟东, 叶辉, 章岳光, 刘旭. 基于亚波长二维光栅的入射角不敏感颜色滤光片研究. 物理学报, 2013, 62(6): 064204. doi: 10.7498/aps.62.064204
    [16] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体 . 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [17] 韩松, 杨河林. 双向多频超材料吸波器的设计与实验研究. 物理学报, 2013, 62(17): 174102. doi: 10.7498/aps.62.174102
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [19] 卢 俊, 陈新邑, 汪剑波. 圆环单元FSS对吸波材料特性的影响研究. 物理学报, 2008, 57(11): 7200-7203. doi: 10.7498/aps.57.7200
    [20] 何燕飞, 龚荣洲, 王 鲜, 赵 强. 蜂窝结构吸波材料等效电磁参数和吸波特性研究. 物理学报, 2008, 57(8): 5261-5266. doi: 10.7498/aps.57.5261
计量
  • 文章访问数:  4949
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-04-16
  • 修回日期:  2010-06-14
  • 刊出日期:  2011-03-15

准全向平板超材料吸波体的设计

  • 1. (1)成都理工大学工程技术学院计科系,乐山 614300; (2)空军工程大学理学院,西安 710051; (3)西安交通大学电子陶瓷与器件教育部重点实验室,西安 710049
    基金项目: 国家自然科学基金(批准号:60871027, 60901029, 61071058),国家重点基础研究发展计划(批准号:2009CB613306)资助的课题.

摘要: 本文设计了一种具有准全向吸波特性的平板超材料吸波体,其准全向吸波特性是由超材料吸波单元的双面吸波、极化不敏感和宽入射角实现的.理论分析和仿真结果表明:该吸波体在6.18 GHz的确有一个双面吸波的吸收点,且吸收率对极化角和入射角均不敏感.提取的等效阻抗表明可以调节超材料的电磁响应使其在吸收频率处与自由空间阻抗匹配来抑制反射.仿真的能量损耗分布表明:该吸波体对电磁波的吸收主要源于基板的介质损耗;采用两种不同介质基板的设计可使前吸波体与后吸波体的耦合度明显降低、抑制耦合所导致的传输.该吸波体可能在许多领域具有

English Abstract

参考文献 (17)

目录

    /

    返回文章
    返回