搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响

於黄忠 温源鑫

引用本文:
Citation:

不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响

於黄忠, 温源鑫

Influence of the thickness and cathode material on the performance of the polymer solar cell

Yu Huang-Zhong, Wen Yuan-Xin
PDF
导出引用
  • 以MEH-PPV(poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylene vinylene))为电子给体材料, PCBM(1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61)为电子受体材料, 制成了共混体系太阳电池.研究了不同厚度活性层对太阳电池性能的影响.结果表明, 活性层厚度为100 nm时,太阳电池具有最佳性能.活性层厚度的增加,增大了光生电荷的复合,减少了太阳电池的填充因子,从而减少了太阳电
    The solar cells based on the blend of MEH-PPV(poly(2-methoxy-5-(2'-ethylhexyloxy) -1,4-phenylene vinylene)) and PCBM (1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61) as acceptor were fabricated. The thickness dependence of the performance of solar cells was studied. The results showed that the solar cells with active layer thickness of 100 nm have the best performance. Increasing device thickness resulted in an increase of charge recombination and a lowering of the fill factor, which leads to lower overall power conversion efficiency. The reasons for the S-shaped kink in the thick device were also analyzed. Influence of the cathode material on the performance of the devices was discussed. The results showed that the solar cells using LiF/Al as the negative electrode formed ohmic contacts at the cathode and anode, which favored the collecting of the charge, increased the transmission of the charge and the absorption of solar light, and improved the performance of the solar cell.
    • 基金项目: 中国科学院可再生能源与天然气水合物重点实验室(批准号:0907K5),华南理工大学亚热带建筑科学国家重点实验室开放研究项目(批准号:2010KB20)学生研究计划项目(批准号:X2lXD210632W)资助的课题.
    [1]

    Yu G, Gao J, Hummelen C, Wudl F, Heeger A J 1995 Science 270 1789

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [4]

    Wang E G, Wang L, Lan L F, Peng J B, Cao Y 2008 Appl. Phys. Lett. 92 033307

    [5]

    Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1

    [6]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

    [7]

    Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Research Letters 4 674

    [8]

    Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143

    [9]

    Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601

    [10]

    Sang G Y, Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302

    [11]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136

    [12]

    You H L, Zhang C F 2009 Chin. Phys. B 18 2096

    [13]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese)[於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [14]

    Zhang Y, de B B, Blom P W M 2010 Phys. Rev. B 81 085201

    [15]

    Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 物理学报 59 2131]

    [16]

    Yu H Z, Peng J B 2008 Organic Electronic 9 1022

    [17]

    Zheng L P, Zhou Q M, Deng X Y, Yuan M, Yu G, Cao Y 2004 J. Phys. Chem. B 108 11921

    [18]

    Tan Z A, Yang C H, Zhou E J, Wang X, Li Y F 2007 Appl. Phys. Lett. 91 023509

    [19]

    Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [20]

    Shirland F 1966 Adv. Energy. Conversion 6 201

    [21]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [22]

    Kumar A, Sista S, Yang Y J 2009 Appl. Phys. 105 094512

    [23]

    Glatthaar M, Riede M, Keegan N, Sylvester-Hvid K, Zimmermann B, Niggemann M, Hinsch A, Gombert A 2007 Sol. Energy Mater. Sol. Cells 91 390

    [24]

    Gadisa A, Svensson M, Mats R, Inganas O 2004 Appl. Phys. Lett. 84 1609

    [25]

    Brabec C J, Cravino A, Meissner D, Sariciftci N S, Fromherz T, Rispens M T, Sanchez L, Hummelen J C 2001 Adv. Funct. Mater. 11 374

    [26]

    Liu J, Shi Y J, Yang Y 2001 Adv. Funct. Mater. 11 420

    [27]

    Mihailetchi V D, Blom P W M, Hummelen J C,Rispens M T 2003 J. Appl. Phys. 94 6849

    [28]

    Bassler H 1993 Phys. Status Solidi 175 15

    [29]

    Veenstra S C, Heeres A, Hadziioannou G, Sawatzky G A, Jonkman H T 2002 Appl. Phys. A: Mater. Sci. Process 75 661

  • [1]

    Yu G, Gao J, Hummelen C, Wudl F, Heeger A J 1995 Science 270 1789

    [2]

    Chen J W, Cao Y 2009 Acc. Chem. Res. 42 1709

    [3]

    Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K, Yang Y 2005 Nat. Mater. 4 864

    [4]

    Wang E G, Wang L, Lan L F, Peng J B, Cao Y 2008 Appl. Phys. Lett. 92 033307

    [5]

    Liang Y, Xu Z, Xia J, Tsai S, Wu Y, Li G, Ray C, Yu L 2010 Adv. Mater. 22 1

    [6]

    He Y J, Chen H Y, Hou J H, Li Y F 2010 J. Am. Chem. Soc. 132 1377

    [7]

    Wang Y, Hou Y B, Tang A W, Feng Z H, Feng B, Li Y, Teng F 2009 Nanoscale Research Letters 4 674

    [8]

    Yu H Z, Peng J B 2008 Chin. Phys. B 17 3143

    [9]

    Feng Z H, Hou Y B, Shi Q M, Qin L F, Li Y, Zhang L, Liu X J, Teng F, Wang Y S, Xia R D 2010 Chin. Phys. B 19 038601

    [10]

    Sang G Y, Zou Y P, Huang Y, Zhao G J, Yang Y, Li Y F 2009 Appl. Phys. Lett. 94 193302

    [11]

    Zhou Y H, Yang Z F, Wu W C, Xia H J, Wen S P, Tian W J 2007 Chin. Phys. 16 2136

    [12]

    You H L, Zhang C F 2009 Chin. Phys. B 18 2096

    [13]

    Yu H Z, Peng J B, Liu J C 2009 Acta Phys. Sin. 58 669 (in Chinese)[於黄忠、彭俊彪、刘金成 2009 物理学报 58 669]

    [14]

    Zhang Y, de B B, Blom P W M 2010 Phys. Rev. B 81 085201

    [15]

    Xu M, Peng J B 2010 Acta Phys. Sin. 59 2131 (in Chinese) [徐 苗、彭俊彪 2010 物理学报 59 2131]

    [16]

    Yu H Z, Peng J B 2008 Organic Electronic 9 1022

    [17]

    Zheng L P, Zhou Q M, Deng X Y, Yuan M, Yu G, Cao Y 2004 J. Phys. Chem. B 108 11921

    [18]

    Tan Z A, Yang C H, Zhou E J, Wang X, Li Y F 2007 Appl. Phys. Lett. 91 023509

    [19]

    Yu H Z, Peng J B, Zhou X M 2008 Acta Phys. Sin. 57 3898 (in Chinese)[於黄忠、彭俊彪、周晓明 2008 物理学报 57 3898]

    [20]

    Shirland F 1966 Adv. Energy. Conversion 6 201

    [21]

    Mihailetchi V D, Wildeman J, Blom P W M 2005 Phys. Rev. Lett. 94 126602

    [22]

    Kumar A, Sista S, Yang Y J 2009 Appl. Phys. 105 094512

    [23]

    Glatthaar M, Riede M, Keegan N, Sylvester-Hvid K, Zimmermann B, Niggemann M, Hinsch A, Gombert A 2007 Sol. Energy Mater. Sol. Cells 91 390

    [24]

    Gadisa A, Svensson M, Mats R, Inganas O 2004 Appl. Phys. Lett. 84 1609

    [25]

    Brabec C J, Cravino A, Meissner D, Sariciftci N S, Fromherz T, Rispens M T, Sanchez L, Hummelen J C 2001 Adv. Funct. Mater. 11 374

    [26]

    Liu J, Shi Y J, Yang Y 2001 Adv. Funct. Mater. 11 420

    [27]

    Mihailetchi V D, Blom P W M, Hummelen J C,Rispens M T 2003 J. Appl. Phys. 94 6849

    [28]

    Bassler H 1993 Phys. Status Solidi 175 15

    [29]

    Veenstra S C, Heeres A, Hadziioannou G, Sawatzky G A, Jonkman H T 2002 Appl. Phys. A: Mater. Sci. Process 75 661

计量
  • 文章访问数:  4491
  • PDF下载量:  652
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-09
  • 修回日期:  2010-06-30
  • 刊出日期:  2011-03-15

不同厚度的活性层及阴极的改变对聚合物太阳电池性能的影响

  • 1. (1)华南理工大学物理系,广州 510640; (2)华南理工大学物理系,广州 510640;华南理工大学亚热带建筑科学国家重点实验室,广州 510640
    基金项目: 

    中国科学院可再生能源与天然气水合物重点实验室(批准号:0907K5),华南理工大学亚热带建筑科学国家重点实验室开放研究项目(批准号:2010KB20)学生研究计划项目(批准号:X2lXD210632W)资助的课题.

摘要: 以MEH-PPV(poly(2-methoxy-5-(2'-ethylhexoxy)-1,4-phenylene vinylene))为电子给体材料, PCBM(1-(3-methoxycarbonyl)-propyl-1-1-phenyl-(6,6)C61)为电子受体材料, 制成了共混体系太阳电池.研究了不同厚度活性层对太阳电池性能的影响.结果表明, 活性层厚度为100 nm时,太阳电池具有最佳性能.活性层厚度的增加,增大了光生电荷的复合,减少了太阳电池的填充因子,从而减少了太阳电

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回