搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响

陈蕾 李平 文玉梅 王东

引用本文:
Citation:

高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响

陈蕾, 李平, 文玉梅, 王东

Effect of High-permeability FeCuNbSiB on magnetoelectric property of magnetostrictive/piezoelectric composite

Chen Lei, Li Ping, Wen Yu-Mei, Wang Dong
PDF
导出引用
  • 采用超磁致伸缩材料TbxDy1-xFe2(x≈0.3)(Terfenol-D)、压电材料PbZrxTi1-xO3(PZT)和高磁导率材料FeCuNbSiB构造了新型的层合结构.由于引入高磁导率材料FeCuNbSiB改变了Terfenol-D的内部磁场分布,并且在磁场作用下,FeCuNbSiB发生形变对Terfenol-D产生应力,增大了Terfeno
    A brand-new magnetostrictive/piezoelectric laminated composite is presented using the giant magnetostrictive Terfenol-D, piezoelectric PZT and high-permeability FeCuNbSiB. Since the high-permeability FeCuNbSiB changes the effective magnetic field in the Terfenol-D and the deformed FeCuNbSiB applies a stress to the Terfenol-D in an external magnetic field, thus the saturation magnetostrictive coefficient of Terfenol-D is enhanced, resulting in a higher magnetoelectric voltage output for the composite. Based on the equivalent magnetic charge theory, the effect of the FeCuNbSiB on the effective magnetic field in the Terfenol-D is analyzed, and the magnetostrictive coefficient of Terfenol-D and the theoretical formula of low-frequency magnetoelectric voltage coefficient are derived based on the nonlinear constitutive model of magnetostrictive material and the equivalent circuit method. The analytical results accord with the experiments qualitatively, and the magnetoelectric voltage of the composite is 1.3 times as high as that of the Terfenol-D/PZT-8H (MP) composite. The experimental results indicate that the thickness of FeCuNbSiB has a great influence on magnetoelectric property. The magnetoelectric voltage coefficient increases nearly linearly with the increase of the thickness of FeCuNbSIB until 180μm.
    • 基金项目: 国家自然科学基金(批准号: 50830202, 60774055, 10776039)资助的课题.
    [1]

    Landau L D, Lifshitz E 1960 Electrodynamics of Continuous Media (Oxford: Pergamon Press) p119

    [2]

    Folen V J, Rado G T, Stalder E W 1961 Phys. Rev. Lett. 6 607

    [3]

    Rado G T, Folen V J 1961 Phys. Rev. Lett. 7 310

    [4]

    Ryu J, Carazo A V,Uchino K, Kim H 2001 Jpn. J. Appl. Phys. 40 4948

    [5]

    Srinivasan G, Rasmussen E T, Hayes R 2003 Phys. Rev. B 67 14418

    [6]

    Srinivasan G, Rasmussen E T, Bush A A, Kametsev K E, Meshcheryakov V F, Fetisov Y K 2004 Appl. Phys. A 78 721

    [7]

    Dong S X, Li J F, Viehland D 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Contrl. 51 793

    [8]

    Dong S X, Li J F, Viehland D 2004 Appl. Phys. Lett. 85 5305

    [9]

    Giang D T H, Quynh L K, Dung N V, Nghi N H 2009 J. Phys.: Conf. Ser. 187 012057

    [10]

    Dong S X, Li J F, Viehland D 2006 J. Mater. Sci. 41 97

    [11]

    Yang F, Wen Y M, Li P, Zheng M, Bian L X 2007 Acta Phys. Sin. 56 3539 (in Chinese) [杨 帆、文玉梅、李 平、郑 敏、卞雷祥 2007 物理学报56 3539]

    [12]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [13]

    Yang W W, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin . 57 4545 (in Chinese) [杨伟伟、文玉梅、李 平、卞雷祥 2008 物理学报 57 4545]

    [14]

    Zhang Y F, Wen Y M, Li P, Bian L X 2009 Acta Phys. Sin. 58 546 (in Chinese) [张延芳、文玉梅、李 平、卞雷祥 2009 物理学报 58 546]

    [15]

    Bian L X, Wen Y M, Li P 2009 Acta Phys. Sin. 58 4205 (in Chinese) [卞雷祥、文玉梅、李 平 2009 物理学报 58 4205]

    [16]

    Or S W, Nersessian N, Carman G P 2004 IEEE Trans. Magn. 40 71

    [17]

    Dong S X, Zhai J Y, Li J F, Viehland D 2006 J. Appl. Phys. 100 124108

    [18]

    Wan Y P, Fang D N 2003 Acta Mech. Sin. 19 324

    [19]

    Dong S X, Li J F, Viehland D 2004 J. Appl. Phys. 95 2625

    [20]

    Dong S X, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Contrl. 50 1253

    [21]

    Ryu J, Priya S, Carazo A V, Uchino K 2001 J. Am. Ceram. Soc. 84 2905

    [22]

    Wan J G, Liu J M 2003 J. Appl. Phys. 93 9916

    [23]

    Chang C M, Carman G P 2007 Phys. Rev. B 76 134116

    [24]

    Aharoni A 1998 J. Appl. Phys. 83 3432

    [25]

    Liang C B, Qing G 1980 Electromagnetics (Beijing: Higher Education Press) p464 (in Chinese) [梁灿彬、秦 光 1980 电磁学(北京: 高等教育出版社) 第464页]

    [26]

    Van Roy W, De Boeck J, Borghs G 1992 Appl. Phys. Lett. 61 3056

    [27]

    Yi J Z 1987 Magnetic Field Calculation and Magnetic Circuit Design (Chengdu: Chengdu Electronic Information Engineering College Press) p16 (in Chinese) [易敬曾 1987 磁场计算与磁路设计(成都: 成都电讯工程学院出版社) 第16页]

    [28]

    Zheng X J, Liu X E 2005 J. Appl. Phys. 97 053901

  • [1]

    Landau L D, Lifshitz E 1960 Electrodynamics of Continuous Media (Oxford: Pergamon Press) p119

    [2]

    Folen V J, Rado G T, Stalder E W 1961 Phys. Rev. Lett. 6 607

    [3]

    Rado G T, Folen V J 1961 Phys. Rev. Lett. 7 310

    [4]

    Ryu J, Carazo A V,Uchino K, Kim H 2001 Jpn. J. Appl. Phys. 40 4948

    [5]

    Srinivasan G, Rasmussen E T, Hayes R 2003 Phys. Rev. B 67 14418

    [6]

    Srinivasan G, Rasmussen E T, Bush A A, Kametsev K E, Meshcheryakov V F, Fetisov Y K 2004 Appl. Phys. A 78 721

    [7]

    Dong S X, Li J F, Viehland D 2004 IEEE Trans. Ultrason. Ferroelectr. Freq. Contrl. 51 793

    [8]

    Dong S X, Li J F, Viehland D 2004 Appl. Phys. Lett. 85 5305

    [9]

    Giang D T H, Quynh L K, Dung N V, Nghi N H 2009 J. Phys.: Conf. Ser. 187 012057

    [10]

    Dong S X, Li J F, Viehland D 2006 J. Mater. Sci. 41 97

    [11]

    Yang F, Wen Y M, Li P, Zheng M, Bian L X 2007 Acta Phys. Sin. 56 3539 (in Chinese) [杨 帆、文玉梅、李 平、郑 敏、卞雷祥 2007 物理学报56 3539]

    [12]

    Li P, Wen Y M, Bian L X 2007 Appl. Phys. Lett. 90 022503

    [13]

    Yang W W, Wen Y M, Li P, Bian L X 2008 Acta Phys. Sin . 57 4545 (in Chinese) [杨伟伟、文玉梅、李 平、卞雷祥 2008 物理学报 57 4545]

    [14]

    Zhang Y F, Wen Y M, Li P, Bian L X 2009 Acta Phys. Sin. 58 546 (in Chinese) [张延芳、文玉梅、李 平、卞雷祥 2009 物理学报 58 546]

    [15]

    Bian L X, Wen Y M, Li P 2009 Acta Phys. Sin. 58 4205 (in Chinese) [卞雷祥、文玉梅、李 平 2009 物理学报 58 4205]

    [16]

    Or S W, Nersessian N, Carman G P 2004 IEEE Trans. Magn. 40 71

    [17]

    Dong S X, Zhai J Y, Li J F, Viehland D 2006 J. Appl. Phys. 100 124108

    [18]

    Wan Y P, Fang D N 2003 Acta Mech. Sin. 19 324

    [19]

    Dong S X, Li J F, Viehland D 2004 J. Appl. Phys. 95 2625

    [20]

    Dong S X, Li J F, Viehland D 2003 IEEE Trans. Ultrason. Ferroelectr. Freq. Contrl. 50 1253

    [21]

    Ryu J, Priya S, Carazo A V, Uchino K 2001 J. Am. Ceram. Soc. 84 2905

    [22]

    Wan J G, Liu J M 2003 J. Appl. Phys. 93 9916

    [23]

    Chang C M, Carman G P 2007 Phys. Rev. B 76 134116

    [24]

    Aharoni A 1998 J. Appl. Phys. 83 3432

    [25]

    Liang C B, Qing G 1980 Electromagnetics (Beijing: Higher Education Press) p464 (in Chinese) [梁灿彬、秦 光 1980 电磁学(北京: 高等教育出版社) 第464页]

    [26]

    Van Roy W, De Boeck J, Borghs G 1992 Appl. Phys. Lett. 61 3056

    [27]

    Yi J Z 1987 Magnetic Field Calculation and Magnetic Circuit Design (Chengdu: Chengdu Electronic Information Engineering College Press) p16 (in Chinese) [易敬曾 1987 磁场计算与磁路设计(成都: 成都电讯工程学院出版社) 第16页]

    [28]

    Zheng X J, Liu X E 2005 J. Appl. Phys. 97 053901

  • [1] 贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫. 基于压电材料的薄膜声学超材料隔声性能研究. 物理学报, 2019, 68(13): 134302. doi: 10.7498/aps.68.20190245
    [2] 李林利, 薛春霞. 压电材料双曲壳热弹耦合作用下的混沌运动. 物理学报, 2019, 68(1): 010501. doi: 10.7498/aps.68.20181714
    [3] 周勇, 李纯健, 潘昱融. 磁致伸缩/压电层叠复合材料磁电效应分析. 物理学报, 2018, 67(7): 077702. doi: 10.7498/aps.67.20172307
    [4] 汤立国. 压电材料全矩阵材料常数超声谐振谱反演技术中的变温模式识别. 物理学报, 2017, 66(2): 027703. doi: 10.7498/aps.66.027703
    [5] 李诚迪, 赵敬龙, 仲崇贵, 董正超, 方靖淮. 量子顺电EuTiO3材料基态磁性的第一性原理研究. 物理学报, 2014, 63(8): 087502. doi: 10.7498/aps.63.087502
    [6] 施展, 陈来柱, 佟永帅, 郑智滨, 杨水源, 王翠萍, 刘兴军. Terfenol-D/PZT磁电复合材料的磁电相位移动研究. 物理学报, 2013, 62(1): 017501. doi: 10.7498/aps.62.017501
    [7] 李平, 黄娴, 文玉梅. 偏置电压对磁致伸缩/压电层合换能结构磁电性能影响. 物理学报, 2012, 61(13): 137504. doi: 10.7498/aps.61.137504
    [8] 毕科, 艾迁伟, 杨路, 吴玮, 王寅岗. Ni/Pb(Zr,Ti)O3/TbFe2层状复合材料的谐振磁电特性研究. 物理学报, 2011, 60(5): 057503. doi: 10.7498/aps.60.057503
    [9] 鲍丙豪, 骆英. 纵向极化与磁化叠层复合材料磁电效应理论及计算. 物理学报, 2011, 60(6): 067504. doi: 10.7498/aps.60.067504
    [10] 鲍丙豪, 骆英. 有限输入阻抗下压电/磁伸层叠材料磁电效应理论及实验. 物理学报, 2011, 60(1): 017508. doi: 10.7498/aps.60.017508
    [11] 张延芳, 文玉梅, 李平, 卞雷祥. 采用阶梯形弹性基底的磁致伸缩/压电复合结构磁电响应研究. 物理学报, 2009, 58(1): 546-553. doi: 10.7498/aps.58.546
    [12] 马静, 施展, 林元华, 南策文. 准2-2型磁电多层复合材料的磁电性能. 物理学报, 2009, 58(8): 5852-5856. doi: 10.7498/aps.58.5852
    [13] 卞雷祥, 文玉梅, 李平. 磁致伸缩/压电叠层复合材料磁-机-电耦合系数分析. 物理学报, 2009, 58(6): 4205-4213. doi: 10.7498/aps.58.4205
    [14] 曹鸿霞, 张 宁. 过渡族元素掺杂BaTiO3-Tb1-xDyxFe2-y层状复合材料中的磁电效应. 物理学报, 2008, 57(10): 6582-6586. doi: 10.7498/aps.57.6582
    [15] 阳昌海, 文玉梅, 李 平, 卞雷祥. 偏置磁场对磁致伸缩/弹性/压电层合材料磁电效应的影响. 物理学报, 2008, 57(11): 7292-7297. doi: 10.7498/aps.57.7292
    [16] 郑 蕾, 蒋成保, 尚家香, 朱小溪, 徐惠彬. 立方结构Fe基磁性材料弹性系数第一性原理计算. 物理学报, 2007, 56(3): 1532-1537. doi: 10.7498/aps.56.1532
    [17] 杨 帆, 文玉梅, 李 平, 郑 敏, 卞雷祥. 考虑损耗的磁致/压电层合材料谐振磁电响应分析. 物理学报, 2007, 56(6): 3539-3545. doi: 10.7498/aps.56.3539
    [18] 周剑平, 施 展, 刘 刚, 何泓材, 南策文. 铁电/铁磁1-3型结构复合材料磁电性能分析. 物理学报, 2006, 55(7): 3766-3771. doi: 10.7498/aps.55.3766
    [19] 万 红, 谢立强, 吴学忠, 刘希从. TbDyFe/PZT层状复合材料的磁电效应研究. 物理学报, 2005, 54(8): 3872-3877. doi: 10.7498/aps.54.3872
    [20] 施 展, 南策文. 铁电/铁磁三相颗粒复合材料的磁电性能计算. 物理学报, 2004, 53(8): 2766-2770. doi: 10.7498/aps.53.2766
计量
  • 文章访问数:  6688
  • PDF下载量:  735
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-08-30
  • 修回日期:  2010-09-16
  • 刊出日期:  2011-03-05

高磁导率材料FeCuNbSiB对超磁致伸缩/压电层合材料磁电性能的影响

  • 1. 重庆大学光电工程学院,教育部光电技术及系统重点实验室,重庆 400044
    基金项目: 国家自然科学基金(批准号: 50830202, 60774055, 10776039)资助的课题.

摘要: 采用超磁致伸缩材料TbxDy1-xFe2(x≈0.3)(Terfenol-D)、压电材料PbZrxTi1-xO3(PZT)和高磁导率材料FeCuNbSiB构造了新型的层合结构.由于引入高磁导率材料FeCuNbSiB改变了Terfenol-D的内部磁场分布,并且在磁场作用下,FeCuNbSiB发生形变对Terfenol-D产生应力,增大了Terfeno

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回