搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

谐振型电光相位调制及光电探测功能器件的研发及应用

田龙 郑立昂 张晓莉 武奕淼 王庆伟 秦博 王雅君 李卫 史少平 陈力荣 郑耀辉

引用本文:
Citation:

谐振型电光相位调制及光电探测功能器件的研发及应用

田龙, 郑立昂, 张晓莉, 武奕淼, 王庆伟, 秦博, 王雅君, 李卫, 史少平, 陈力荣, 郑耀辉

Resonant electro-optic phase modulator and photodetector for stabilizing laser frequency and quantum optics

Tian Long, Zheng Li-Ang, Zhang Xiao-Li, Wu Yi-Miao, Wang Qing-Wei, Qin Bo, Wang Ya-Jun, Li Wei, Shi Shao-Ping, Chen Li-Rong, Zheng Yao-Hui
PDF
HTML
导出引用
  • 针对极微弱信号提取及探测需求, 研发高调制深度、低功耗、低半波电压的谐振型电光相位调制(RPM)以及微瓦级、高信噪比谐振型光电探测(RPD)功能器件. 基于单端楔角铌酸锂晶体、低噪声光电二极管及低损高Q电子元件组成谐振电路, 利用谐振增强原理实现低功耗、高调制深度电光调制及高增益光电探测等; 所研发的RPM在最佳调制频点为10.00 MHz时, 带宽为225 kHz, Q值为44.4, 调制深度为1.435时所需射频驱动电压峰值为8 V; RPM在最佳调制频点为20.00 MHz时, 带宽为460 kHz, Q值为43.5, 调制深度为1.435时所需射频驱动电压峰值为13 V; 将自研的RPD最佳探测频点调节为20.00 MHz, 带宽为1 MHz, Q值为20, 增益为80 dB@100 μW; 利用自研RPM和RPD组成极微弱信号提取链路, 在500 mV峰值电压驱动RPM下(调制深度约为0.055), 可实现直接输出误差信号信噪比为5.088@10 μW, 34.933@50 μW以及58.7@100 μW. 极微弱信号提取链路经过比例积分微分参数优化提升整个反馈控制环路性能及稳定性, 为制备高稳定量子光源及超稳激光等领域提供关键器件及技术途径.
    Photoelectric functional device with specific optical, electrical and photoelectric conversion effects is one of the most important resources of modern information science and technology. Electro-optic modulator and photodetector are very important photoelectric functional devices, which are key devices in the fields of frequency locking, feedback control, photoelectric information conversion, optical communication, photoelectric information modulation, etc., and play an irreplaceable role in frequency stabilization locking technology of PDH (Pound-Drever-Hall, simply referred to as PDH). The PDH technology is widely used in researches of large scientific devices, quantum optics, optical communication and other fields. Using electro-optical phase modulator to carry out laser phase modulation is the primary process to realize frequency stabilization locking of standard PDH. Photoelectric detection can implement the photoelectric conversion of the carried weak modulation signal and spectral peak signal into electrical signal, and then feedback control through proportional integral and differential circuits, so as to achieve stable locking and frequency stabilization. The resonant electro-optical phase modulation (RPM) with high modulation depth, low power consumption and low half-wave voltage and microwatt resonant photoelectric detection (RPD) functional device with high signal-to-noise (SNR) ratio are invented to meet the demand for extraction and detection of extremely weak signals. The resonant circuit is composed of the single-end wedge-angle lithium niobate crystal, low noise photodiode and low-loss and high-Q electronic components. Low power consumption, high modulation depth electro-optic modulation, and high gain photoelectric detection are realized by the principle of resonant enhancement. When the optimal modulation frequency point is 10 MHz, the bandwidth of RPM is 225 kHz with Q of 44.4, when the modulation depth is 1.435, the RPM requires RF drive voltage of RPM to be 4 V. When the optimal modulation frequency point is 20 MHz, the bandwidth of RPM is 460 kHz with Q of 43.5, the required RF drive voltage of RPM is 6.5 V when the modulation depth is 1.435. The optimal detection frequency point of the self-invent RPD is 20.00 MHz, with a bandwidth of 1 MHz, Q of 20, the gain of 80 dB at 100 μW. With the home-made RPM and RPD in the extraction loop for extremely weak signal, the SNR of error signal is as high as 5.088 at 10 μW, 34.933 at 50 μW and 58.7 at 100 μW. Such a loop improves the performance and stability of the entire feedback control loop by optimizing parameters of proportional integral differential, which provides key devices and technological approaches for preparing a highly stable quantum light source and ultra-stable laser.
      通信作者: 田龙, tianlong@sxu.edu.cn ; 郑耀辉, yhzheng@sxu.edu.cn
    • 基金项目: 国家重点研发计划(批准号: 2020YFC2200402)、国家自然科学基金(批准号: 62027821, 62225504, 62035015, U22A6003, 12174234, 12274275)、山西省重点研发计划(批准号: 202102150101003)和山西省三晋学者特聘教授项目资助的课题.
      Corresponding author: Tian Long, tianlong@sxu.edu.cn ; Zheng Yao-Hui, yhzheng@sxu.edu.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2020YFC2200402), the National Natural Science Foundation of China (Grants Nos. 62027821, 62225504, 62035015, U22A6003, 12174234, 12274275), the Key R&D Program of Shanxi, China (Grant No. 202102150101003), and the Program for Sanjin Scholar of Shanxi Province, China.
    [1]

    周忠祥 2017 光电功能材料与器件 (北京: 高等教育出版社) 第20页

    Zhou Z X 2017 Optoelectronic Functional Materials and Devices (Beijing: Higher Education Press) p20 (in Chinese)

    [2]

    Drever R W, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [3]

    Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J 1992 Science 256 325Google Scholar

    [4]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [5]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [7]

    Thorlabs, https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=2729 [2023-04-25]

    [8]

    李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [9]

    尚成林, 陶诗琪, 孙昊骋, 潘安, 曾成, 夏金松 2022 半导体光电 43 95

    Shang C L, Tao S Q, Sun H C, Pan A, Zeng C, Xia J S 2022 Semicond. Optoelectron. 43 95

    [10]

    刘子溪, 曾成, 夏金松 2022 中国激光 49 1206001Google Scholar

    Liu Z X, Zeng C, Xia J S 2022 Chin. J. Lasers 49 1206001Google Scholar

    [11]

    张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光 2021 物理学报 70 084202Google Scholar

    Zhang T, Li D W, Wang T, Cui Y, Zhang T X, Wang L, Zhang J, Xu G 2021 Acta Phys. Sin. 70 084202Google Scholar

    [12]

    Matei D G, Legero T, Häfner S, Grebing C, Weyrich R, Zhang W, Sterr U 2017 Phys. Rev. Lett. 118 263202Google Scholar

    [13]

    邰朝阳 2018 博士学位论文 (北京: 中国科学院大学)

    Tai C Y 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [14]

    Shi X H, Zhang J, Zeng X Y, Lü X L, Liu K, Xi J, Ye Y X, Lu Z H 2018 Appl. Phys. B 124 153

    [15]

    Li L F, Wang J, Bi J, Zhang T, Peng J K, Zhi Y L, Chen L S 2021 Rev. Sci. Instrum. 92 043001Google Scholar

    [16]

    Li Z H, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G, Jiang H F 2016 Opt. Lett. 41 5584Google Scholar

    [18]

    Zhi Y L, Chen L S, Li L F 2022 Opt. Express 30 17936Google Scholar

    [19]

    Dooley K L 2011 Design and Performance of High Laser Power Interferometers for Gravitational-Wave Detection (Florida: University of Florida) p128

    [20]

    Qubig, https://www.qubig.com/products/electro-optic-modulators-230/phase-modulators.html [2023-4-25]

    [21]

    郑耀辉 焦南婧 李瑞鑫 田龙 王雅君 2022 中国专利 CN112649975B

    Zheng Y H, Jiao N J, Li R X, Tian L, Wang Y J 2022 China Patent CN112649975 B(in Chinese)

    [22]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [23]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

    [24]

    靳晓丽, 苏静, 郑耀辉 2016 量子光学学报 22 108

    Jin X L, Su J, Zheng Y H 2016 J. Quantum Opt. 22 108

    [25]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 郑耀辉 2022 红外与激光工程 51 111

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Zheng Y H 2022 Infrared Laser Engineer. 51 111

    [26]

    潘国鑫, 刘惠, 翟泽辉, 刘建丽 2021 量子光学学报 2 109

    Pan G X, Liu H, Zhai Z H, Liu J L 2021 J. Quantum Opt. 2 109

    [27]

    Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar

    [28]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Pan J W 2020 Science 370 1460Google Scholar

    [29]

    周海军, 王文哲, 郑耀辉 2013 光学精密工程 21 2737Google Scholar

    Zhou H J, Wang W Z, Zheng Y H 2013 Opt. Precis. Engineer. 21 2737Google Scholar

    [30]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [31]

    Bowden W, Vianello A, Hobson R 2019 Rev. Sci. Instrum. 90 106106Google Scholar

    [32]

    Grote H 2007 Rev. Sci. Instrum. 78 54704Google Scholar

    [33]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [34]

    陈朝勇 2018 硕士学位论文 (太原: 山西大学)

    Chen C Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [35]

    张培玲 2018 高频电子线路 (北京: 机械工业出版社) 第9页

    Zhang P L 2018 High Freq. Circuits (Beijing: China Machine Press) p9 (in Chinese)

    [36]

    李志秀 2019 博士学位论文(太原: 山西大学)

    Li Z X 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [37]

    张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 4 456

    Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Opt. 4 456

  • 图 1  典型串联谐振回路

    Fig. 1.  Typical series resonant circuit.

    图 2  贝塞尔函数随调制深度变化关系图

    Fig. 2.  Diagram of Bessel function with modulation depth.

    图 3  谐振光电器件测试实验装置图(Laser为全固态激光器; OI为光隔离器; λ/2为半波片; PBS为偏振分束器; RPM为电光相位调制器; HR为高反镜; OSC为示波器; MC为模式清洁器; RPD为共振探测器; PD为光电探测器; NA为网络分析仪)

    Fig. 3.  Experimental setup for testing resonant photoelectric devices (Laser, solid-state laser; OI, optical isolator; λ/2, half-wave-plate; PBS, polarization beam splitter; RPM, resonant electro-optic phase modulator; HR, high reflective mirror; OSC, oscilloscope; MC, mode cleaner; RPD, resonant photodetector; PD, normal photodetector; NA, network analyzer).

    图 4  自研谐振型电光相位调制器的阻抗分析测试结果图

    Fig. 4.  Input return loss test results of RPM.

    图 5  调制器调制深度随驱动电压变化测试结果图

    Fig. 5.  The test results of modulator debugging depth as a function of driving voltage.

    图 6  自研谐振型光电功能器件(a)与商用探测器(b)的传输信号测试图

    Fig. 6.  The test result of transmission signal of self-innovate resonant photoelectric devices (a) and commercial detector (b).

    图 7  MC腔误差信号的信噪比和峰峰值测试结果图

    Fig. 7.  The test results of signal to noise ratio and peak-to-peak of MC cavity error signal.

  • [1]

    周忠祥 2017 光电功能材料与器件 (北京: 高等教育出版社) 第20页

    Zhou Z X 2017 Optoelectronic Functional Materials and Devices (Beijing: Higher Education Press) p20 (in Chinese)

    [2]

    Drever R W, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [3]

    Abramovici A, Althouse W E, Drever R W, Gürsel Y, Kawamura S, Raab F J 1992 Science 256 325Google Scholar

    [4]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [5]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [6]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Lett. 43 5411Google Scholar

    [7]

    Thorlabs, https://www.thorlabschina.cn/newgrouppage9.cfm?objectgroup_id=2729 [2023-04-25]

    [8]

    李庚霖, 贾曰辰, 陈峰 2020 物理学报 69 157801Google Scholar

    Li G L, Jia Y C, Chen F 2020 Acta Phys. Sin. 69 157801Google Scholar

    [9]

    尚成林, 陶诗琪, 孙昊骋, 潘安, 曾成, 夏金松 2022 半导体光电 43 95

    Shang C L, Tao S Q, Sun H C, Pan A, Zeng C, Xia J S 2022 Semicond. Optoelectron. 43 95

    [10]

    刘子溪, 曾成, 夏金松 2022 中国激光 49 1206001Google Scholar

    Liu Z X, Zeng C, Xia J S 2022 Chin. J. Lasers 49 1206001Google Scholar

    [11]

    张腾, 李大为, 王韬, 崔勇, 张天雄, 王丽, 张杰, 徐光 2021 物理学报 70 084202Google Scholar

    Zhang T, Li D W, Wang T, Cui Y, Zhang T X, Wang L, Zhang J, Xu G 2021 Acta Phys. Sin. 70 084202Google Scholar

    [12]

    Matei D G, Legero T, Häfner S, Grebing C, Weyrich R, Zhang W, Sterr U 2017 Phys. Rev. Lett. 118 263202Google Scholar

    [13]

    邰朝阳 2018 博士学位论文 (北京: 中国科学院大学)

    Tai C Y 2018 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences) (in Chinese)

    [14]

    Shi X H, Zhang J, Zeng X Y, Lü X L, Liu K, Xi J, Ye Y X, Lu Z H 2018 Appl. Phys. B 124 153

    [15]

    Li L F, Wang J, Bi J, Zhang T, Peng J K, Zhi Y L, Chen L S 2021 Rev. Sci. Instrum. 92 043001Google Scholar

    [16]

    Li Z H, Ma W G, Yang W H, Wang Y J, Zheng Y H 2016 Opt. Lett. 41 3331Google Scholar

    [17]

    Tai Z Y, Yan L L, Zhang Y Y, Zhang X F, Guo W G, Zhang S G, Jiang H F 2016 Opt. Lett. 41 5584Google Scholar

    [18]

    Zhi Y L, Chen L S, Li L F 2022 Opt. Express 30 17936Google Scholar

    [19]

    Dooley K L 2011 Design and Performance of High Laser Power Interferometers for Gravitational-Wave Detection (Florida: University of Florida) p128

    [20]

    Qubig, https://www.qubig.com/products/electro-optic-modulators-230/phase-modulators.html [2023-4-25]

    [21]

    郑耀辉 焦南婧 李瑞鑫 田龙 王雅君 2022 中国专利 CN112649975B

    Zheng Y H, Jiao N J, Li R X, Tian L, Wang Y J 2022 China Patent CN112649975 B(in Chinese)

    [22]

    Kwee P, Willke B, Danzmann K 2009 Opt. Lett. 34 2912Google Scholar

    [23]

    Junker J, Oppermann P, Willke B 2017 Opt. Lett. 42 755Google Scholar

    [24]

    靳晓丽, 苏静, 郑耀辉 2016 量子光学学报 22 108

    Jin X L, Su J, Zheng Y H 2016 J. Quantum Opt. 22 108

    [25]

    王炜杰, 李番, 李健博, 鞠明健, 郑立昂, 田宇航, 郑耀辉 2022 红外与激光工程 51 111

    Wang W J, Li F, Li J B, Ju M J, Zheng L A, Tian Y H, Zheng Y H 2022 Infrared Laser Engineer. 51 111

    [26]

    潘国鑫, 刘惠, 翟泽辉, 刘建丽 2021 量子光学学报 2 109

    Pan G X, Liu H, Zhai Z H, Liu J L 2021 J. Quantum Opt. 2 109

    [27]

    Hu X M, Huang C X, Sheng Y B, Zhou L, Liu B H, Guo Y, Guo G C 2021 Phys. Rev. Lett. 126 010503Google Scholar

    [28]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Pan J W 2020 Science 370 1460Google Scholar

    [29]

    周海军, 王文哲, 郑耀辉 2013 光学精密工程 21 2737Google Scholar

    Zhou H J, Wang W Z, Zheng Y H 2013 Opt. Precis. Engineer. 21 2737Google Scholar

    [30]

    Chen C Y, Shi S P, Zheng Y H 2017 Rev. Sci. Instrum. 88 103101Google Scholar

    [31]

    Bowden W, Vianello A, Hobson R 2019 Rev. Sci. Instrum. 90 106106Google Scholar

    [32]

    Grote H 2007 Rev. Sci. Instrum. 78 54704Google Scholar

    [33]

    Chen C Y, Li Z X, Jin X L, Zheng Y H 2016 Rev. Sci. Instrum. 87 103114Google Scholar

    [34]

    陈朝勇 2018 硕士学位论文 (太原: 山西大学)

    Chen C Y 2018 M. S. Thesis (Taiyuan: Shanxi University) (in Chinese)

    [35]

    张培玲 2018 高频电子线路 (北京: 机械工业出版社) 第9页

    Zhang P L 2018 High Freq. Circuits (Beijing: China Machine Press) p9 (in Chinese)

    [36]

    李志秀 2019 博士学位论文(太原: 山西大学)

    Li Z X 2019 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [37]

    张宏宇, 王锦荣, 李庆回, 吉宇杰, 贺子洋, 杨荣草, 田龙 2019 量子光学学报 4 456

    Zhang H Y, Wang J R, Li Q H, Ji Y J, He Z Y, Yang R C, Tian L 2019 J. Quantum Opt. 4 456

  • [1] 刘晓轩, 孙飞扬, 吴颖, 杨盛谊, 邹炳锁. 硅纳米线阵列光电探测器研究进展. 物理学报, 2023, 72(6): 068501. doi: 10.7498/aps.72.20222303
    [2] 霍冠忠, 苏超, 王可, 叶晴莹, 庄彬, 陈水源, 黄志高. 铁酸铋薄膜光电流的磁场调制研究. 物理学报, 2023, 72(6): 067501. doi: 10.7498/aps.72.20222053
    [3] 沈柳枫, 胡令祥, 康逢文, 叶羽敏, 诸葛飞. 光电神经形态器件及其应用. 物理学报, 2022, 71(14): 148505. doi: 10.7498/aps.71.20220111
    [4] 赵一默, 黄志伟, 彭仁苗, 徐鹏鹏, 吴强, 毛亦琛, 余春雨, 黄巍, 汪建元, 陈松岩, 李成. 超薄介质插层调制的氧化铟锡/锗肖特基光电探测器. 物理学报, 2021, 70(17): 178506. doi: 10.7498/aps.70.20210138
    [5] 雷挺, 吕伟明, 吕文星, 崔博垚, 胡瑞, 时文华, 曾中明. 光栅局域调控二维光电探测器. 物理学报, 2021, 70(2): 027801. doi: 10.7498/aps.70.20201325
    [6] 李丹阳, 韩旭, 徐光远, 刘筱, 赵枭钧, 李庚伟, 郝会颖, 董敬敬, 刘昊, 邢杰. 低功耗、高灵敏的Bi2O2Se光电导探测器. 物理学报, 2020, 69(24): 248502. doi: 10.7498/aps.69.20201044
    [7] 赵显宇, 曲兴华, 陈嘉伟, 郑继辉, 王金栋, 张福民. 一种基于电光调制光频梳光谱干涉的绝对测距方法. 物理学报, 2020, 69(9): 090601. doi: 10.7498/aps.69.20200081
    [8] 胡伟达, 李庆, 陈效双, 陆卫. 具有变革性特征的红外光电探测器. 物理学报, 2019, 68(12): 120701. doi: 10.7498/aps.68.20190281
    [9] 王大为, 王召巴. 一种强噪声背景下微弱超声信号提取方法研究. 物理学报, 2018, 67(21): 210501. doi: 10.7498/aps.67.20180789
    [10] 吴丹丹, 佘卫龙. 线性吸收介质非局域线性电光效应的耦合波理论. 物理学报, 2017, 66(6): 064202. doi: 10.7498/aps.66.064202
    [11] 闫夏超, 朱江, 张蜡宝, 邢强林, 陈亚军, 朱宏权, 李舰艇, 康琳, 陈健, 吴培亨. 基于超导纳米线单光子探测器深空激光通信模型及误码率研究. 物理学报, 2017, 66(19): 198501. doi: 10.7498/aps.66.198501
    [12] 任雅娜, 杨保东, 王杰, 杨光, 王军民. 铯原子7S1/2态磁偶极超精细常数的测量. 物理学报, 2016, 65(7): 073103. doi: 10.7498/aps.65.073103
    [13] 钟东洲, 邓涛, 郑国梁. 双信道偏振复用保密通信系统的完全混沌同步的操控性研究. 物理学报, 2014, 63(7): 070504. doi: 10.7498/aps.63.070504
    [14] 李长胜. 晶体的双参量调制及其应用. 物理学报, 2014, 63(7): 074207. doi: 10.7498/aps.63.074207
    [15] 周飞, 曹原, 雍海林, 彭承志, 王向斌. 基于电光效应的光子频移研究. 物理学报, 2014, 63(20): 204202. doi: 10.7498/aps.63.204202
    [16] 孙悟, 邓小玖, 李耀东, 张永明, 郑赛晶, 王维妙. 双波长抗干扰光电感烟探测机理. 物理学报, 2013, 62(3): 030201. doi: 10.7498/aps.62.030201
    [17] 张戎, 郭旭光, 曹俊诚. 太赫兹量子阱光电探测器光栅耦合的模拟与优化. 物理学报, 2011, 60(5): 050705. doi: 10.7498/aps.60.050705
    [18] 陈建军, 李 智, 张家森, 龚旗煌. 基于电光聚合物的表面等离激元调制器. 物理学报, 2008, 57(9): 5893-5898. doi: 10.7498/aps.57.5893
    [19] 林 敏, 黄咏梅. 调制与解调用于随机共振的微弱周期信号检测. 物理学报, 2006, 55(7): 3277-3282. doi: 10.7498/aps.55.3277
    [20] G.O.斯屈克尔. 磁调制光电倍加管的超光度计. 物理学报, 1958, 14(1): 23-36. doi: 10.7498/aps.14.23
计量
  • 文章访问数:  2999
  • PDF下载量:  233
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-30
  • 修回日期:  2023-05-04
  • 上网日期:  2023-05-22
  • 刊出日期:  2023-07-20

/

返回文章
返回