搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于等离激元多重杂化效应的光吸收结构

杨帅 毛海央 鲍爱达 郭鑫 李锐锐 杨宇东 石梦 陈大鹏

引用本文:
Citation:

基于等离激元多重杂化效应的光吸收结构

杨帅, 毛海央, 鲍爱达, 郭鑫, 李锐锐, 杨宇东, 石梦, 陈大鹏

Light absorbing structures based on plasmon multi-hybrid effect

Yang Shuai, Mao Hai-Yang, Bao Ai-Da, Guo Xin, Li Rui-Rui, Yang Yu-Dong, Shi Meng, Chen Da-Peng
PDF
HTML
导出引用
  • 近年来, 以聚合物为代表的高分子材料由于具有比其他光吸收材料(如半导体材料、碳基材料以及贵金属纳米材料)更好的柔性和粘弹性而受到广泛关注. 本文基于等离子体再聚合技术和磁控溅射工艺在聚合物材料层上制备了具有等离激元多重杂化效应的光吸收结构, 该结构具有宽谱高吸收特性. 该结构的制备工艺简单易行, 对不同聚合物材料具有通用性, 在光学器件领域具有广泛的应用前景.
    In recent years, the polymers represented by macromolecular materials have attracted widespread attention due to their higher flexibility and viscoelastic, compared with other materials used for light absorption (such as semiconductor materials, carbon-based materials and noble metal nanomaterials). Although the polymers have shown potential applications in the photothermal field, compared with other light-absorbing materials, the polymer substrates have a low light absorption rate and a narrow absorption bandwidth concentrated in the visible light band. Therefore, it is necessary to prepare a structure on the polymer material layer for absorbing light, thereby improving the ability of the polymer to absorb light. In addition, since the existing preparation processes of polymer absorption structures require the use of templates and the processes are relatively complicated, there is an urgent need for a simple and easy process to prepare the absorption structures on the polymer material layer. In this article, composite nanoforests are prepared on polymer substrates based on a plasma repolymerization technology and magnetron sputtering process; due to the metallic nanoparticles existing, multi-hybrid plasmonic effect is achieved, thus the average light absorption rate of the polymer in a wavelength range of 380–2500 nm is increased from 23.34% to 74.56%. Such polymer composite nanoforests have high absorption characteristics in a wide spectral range. The method of preparing the structure is quite simple, and can be applied to preparing different polymer materials. Besides, by changing the plasma bombardment time, the morphology of the nanoforests can be adjusted; by increasing the size of the metallic nanoparticles, the absorption of the composite nanoforests can be increased. It is foreseeable that the polymer composite nanoforests will have applications in various optical devices.
      通信作者: 毛海央, maohaiyang@ime.ac.cn ; 鲍爱达, baoaida@nuc.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61771467)、广东省重点领域研发计划(批准号: 2019B010117001)和中国科学院青促会项目(批准号: 2018153)资助的课题.
      Corresponding author: Mao Hai-Yang, maohaiyang@ime.ac.cn ; Bao Ai-Da, baoaida@nuc.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61771467), the High Technology Research and Development Project of Guangdong Province, China (Grant No. 2019B010117001), and the Youth Innovation Promotion Association, Chinese Academy of Sciences, China (Grant No. 2018153).
    [1]

    Fu Y, Mei T, Wang G, Guo A K, Wang X B 2017 Appl. Therm. Eng. 114 961Google Scholar

    [2]

    Liu K K, Jiang Q, Tadepalli S, Raliya R, Naik R R 2017 ACS Appl. Mater. Interfaces 9 7675Google Scholar

    [3]

    Kashyap V, Al-Bayati A, Sajadi S M, Irajizad P, Wang S H 2017 J. Mater. Chem. A 5 15227Google Scholar

    [4]

    Liu T, Li Y 2016 Nat. Photonics 10 361Google Scholar

    [5]

    Chen H, Blaber M G, Standridge S D, Demarco E J, Hupp J T, Ratner M A 2012 J. Phys. Chem. C 116 10215Google Scholar

    [6]

    Yu X, Fu Y, Cai X, Kafafy H, Zou D 2013 Nano Energy 2 1242Google Scholar

    [7]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 J. Energy Chem. 27 951Google Scholar

    [8]

    Henrik L 2007 Energy 32 912Google Scholar

    [9]

    Kuo M, Lo W 2014 IEEE Trans. Ind. Appl. 50 2818Google Scholar

    [10]

    Yu Y, Huang L, Cao L 2014 Sci. Rep. 4 4107Google Scholar

    [11]

    Xue G, Liu K, Chen Q, Yang P, Li J, Ding T 2017 ACS Appl. Mater. Interfaces 9 15052Google Scholar

    [12]

    Luo X, Huang C, Liu S, Zhong J 2018 Int. J. Energy Res. 42 4830Google Scholar

    [13]

    Olson T Y, Zhang J Z 2008 J. Mater. Sci. Technol. 24 433Google Scholar

    [14]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 3637Google Scholar

    [15]

    Rinke P, Scheffler M, Qteish A, Winkelnkemper M, Bimberg D, Neugebauer J 2006 Appl. Phys. Lett. 89 161919Google Scholar

    [16]

    Mao H, Ou W 2015 US Patent 9 117 949

    [17]

    Zhu L, Gao M, Peh C K N, Wang X, Ho G W 2018 Adv. Energy Mater. 6 14571Google Scholar

    [18]

    Tran V T, Kim J, Tufa L T, Oh S, Kwon J, Lee J 2017 Anal. Chem. 90 225Google Scholar

    [19]

    Li C, Jiang D, Huo B, Ding M, Huang C, Jia D 2019 Nano Energy 60 841Google Scholar

    [20]

    Chen Y, Elshobaki M, Ye Z, Park J M, Noack M A, Ho K M 2013 Phys. Chem. Chem. Phys. 15 4297Google Scholar

    [21]

    Liu Y R, Shang X, Gao W K, Dong B, Li X, Li X H 2017 J. Mater. Chem. A 5 2885Google Scholar

    [22]

    Ostfeld A E, Pacifici D 2011 Appl. Phys. Lett. 98 113112.1Google Scholar

    [23]

    Cao Y, Du P, Qiao Y 2014 Appl. Phys. Lett. 105 153902.1

    [24]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 Journal of Energy Chemistry 27 951

    [25]

    Yu Y, Huang L, Cao L 2014 Scientific Reports 4 4107

    [26]

    Lin Q, Lu L, Tavakoli M M, Zhang C, Lui G C, Chen Z 2016 Nano Energy 22 539Google Scholar

    [27]

    Wang Y, Tang L, Mao H, Lei C, Ou W, Xiong J, Wang W, Wang L, Hu J 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) Shanghai, China, January 24−28, 2016 p1185

    [28]

    Auer S, Frenkel D 2001 Nature 413 711Google Scholar

    [29]

    Han K M, Cho J S, Yoo J 2015 Vacuum 115 85Google Scholar

    [30]

    Linbao L, Di W, Chao X, Jigang H, Xingyuan Z, Fengxia L 2019 Adv. Funct. Mater. 29 1900849Google Scholar

    [31]

    Meng L, Zhang Y, Yam C Y 2017 J. Phys. Chem. Lett. 8 571Google Scholar

    [32]

    Shalchian M, Grisolia J, Assayag G B, Coffin H, Atarodi S M, Claverie A 2005 Appl. Phys. Lett. 86 163111Google Scholar

    [33]

    Park Y, Berger J, Tang Z, Mueller-Meskamp L, Lasagni A F, Vandewal K 2016 Appl. Phys. Lett. 109 093301Google Scholar

    [34]

    Yu A, Bumai N I, Dolgikh A A, Kharchenko V F, Valeev V I, Nuzhdin R I 2014 J. Appl. Spectrosc. 81 188Google Scholar

    [35]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 400

    [36]

    Thongrattanasiri S, Koppens F H L, Abajo F J G D 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [37]

    Duan H G, Fernández-Domínguez A I, Bosman M 2012 Nano Lett. 12 1683Google Scholar

    [38]

    Hu Y, LaPierre R R, Li M 2012 J. Appl. Phys. 112 104311Google Scholar

    [39]

    Kim S K, Ee H S, Choi W, Kwon S H, Kang J H, Kim Y H 2011 Appl. Phys. Lett. 98 011109Google Scholar

    [40]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar

    [41]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [42]

    Zhou L, Tan Y, Wang J 2016 Nat. Photonics 10 393Google Scholar

    [43]

    Liang J, Liu H, Yu J, Zhou L, Zhu J 2019 Nanophotonics 8 771Google Scholar

  • 图 1  在PI表面上制备纳米纤维森林结构的工艺流程及各步骤所获得结构的SEM图 (a) 未经处理的PI表面SEM图; (b) 30 min氧等离子体轰击后PI表面的SEM图; (c) 30 min氩等离子体轰击后PI表面的SEM图; (d) 30 min氧和30 min氩等离子体依次轰击后PI表面的SEM图

    Fig. 1.  Preparation process and SEM images of nanofiber forests on the surface of PI substrate: (a) SEM image of untreated PI surface; (b) SEM image of PI surface bombarded by 30 min oxygen plasma; (c) SEM image of PI surface bombarded by 30 min argon plasma; (d) SEM image of PI surface bombarded by 30 min oxygen and 30 min argon plasma.

    图 2  纳米纤维森林结构的平均高度与氧等离子体轰击时间之间的关系曲线

    Fig. 2.  The plot of the average height of nanofiber forests at different etching time of oxygen plasma.

    图 3  复合纳米森林光吸收结构的制备工艺流程 (a)纳米纤维森林结构; (b) 材料层背面溅射金纳米薄膜层; (c)纳米纤维森林结构表面溅射金纳米颗粒

    Fig. 3.  Preparation process of the composite nanoforests: (a) Nanofiber forests; (b) Au nanofilm sputtering on the back; (c) Au nanoparticle sputtering on surface of the composite nanoforests.

    图 4  复合纳米森林光吸收结构表面100个金纳米颗粒尺寸分布直方图(插图为金纳米颗粒分布SEM照片)

    Fig. 4.  The size distribution histogram of 100 gold nanoparticles on surface of the composite nanoforests (inset shows the gold nanoparticle distribution around a nanofiber).

    图 5  具有不同高度纳米纤维森林结构的PI材料层的吸收谱图(插图为不同时间氧等离子体轰击后PI表面的SEM照片)

    Fig. 5.  Absorption spectra and the SEM images (inset) of PI nanofiber forests with different heights.

    图 6  PI光吸收结构的吸收谱图 (a) 不同时间氧等离子体轰击后的PI复合纳米森林结构的光吸收率; (b)不同PI光吸收结构的光吸收率

    Fig. 6.  Absorption spectra of PI: (a) Composite nanoforests after different periods of bombardment; (b) different structures.

    图 7  表面分布着不同粒径尺寸金纳米颗粒的PI复合纳米森林结构光吸收率 (a) 吸收谱图; (b) 光吸收率与金纳米颗粒粒径之间的关系曲线(插图为SEM图及样品照片)

    Fig. 7.  Absorption rate of PI composite nanoforests with gold nanoparticles of different sizes: (a) Absorption spectra; (b) the change curve of light absorption rate of nanoforests with gold nanoparticles of different sizes (insets show images of the sample).

    图 8  相同工艺条件下不同聚合物光吸收结构的吸收谱图 (a)制备纳米纤维森林结构前不同聚合物的吸收谱; (b)制备了复合纳米森林结构后的不同聚合物的吸收谱(插图为SEM照片)

    Fig. 8.  Absorption spectra of different polymers: (a) Without nanoforests; (b) with composite nanoforests (inset show the corresponding SEM images).

    图 9  三种聚合物在表面制备复合纳米森林结构前后光吸收率的对比

    Fig. 9.  Light absorption curves of three polymers before and after preparation of composite nanoforests.

    图 10  不同结构的电磁场增强FDTD仿真分析 (a) 基底表面电磁场分布; (b) 纳米纤维森林结构周围的电磁场分布; (c) 复合纳米森林结构周围的电磁场分布

    Fig. 10.  FDTD simulation analysis of different structures: (a) Distribution of electric field on the substrate surface; (b) distribution of electric field around a nanofiber; (c) distribution of electric field around a composite nanofiber.

  • [1]

    Fu Y, Mei T, Wang G, Guo A K, Wang X B 2017 Appl. Therm. Eng. 114 961Google Scholar

    [2]

    Liu K K, Jiang Q, Tadepalli S, Raliya R, Naik R R 2017 ACS Appl. Mater. Interfaces 9 7675Google Scholar

    [3]

    Kashyap V, Al-Bayati A, Sajadi S M, Irajizad P, Wang S H 2017 J. Mater. Chem. A 5 15227Google Scholar

    [4]

    Liu T, Li Y 2016 Nat. Photonics 10 361Google Scholar

    [5]

    Chen H, Blaber M G, Standridge S D, Demarco E J, Hupp J T, Ratner M A 2012 J. Phys. Chem. C 116 10215Google Scholar

    [6]

    Yu X, Fu Y, Cai X, Kafafy H, Zou D 2013 Nano Energy 2 1242Google Scholar

    [7]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 J. Energy Chem. 27 951Google Scholar

    [8]

    Henrik L 2007 Energy 32 912Google Scholar

    [9]

    Kuo M, Lo W 2014 IEEE Trans. Ind. Appl. 50 2818Google Scholar

    [10]

    Yu Y, Huang L, Cao L 2014 Sci. Rep. 4 4107Google Scholar

    [11]

    Xue G, Liu K, Chen Q, Yang P, Li J, Ding T 2017 ACS Appl. Mater. Interfaces 9 15052Google Scholar

    [12]

    Luo X, Huang C, Liu S, Zhong J 2018 Int. J. Energy Res. 42 4830Google Scholar

    [13]

    Olson T Y, Zhang J Z 2008 J. Mater. Sci. Technol. 24 433Google Scholar

    [14]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 3637Google Scholar

    [15]

    Rinke P, Scheffler M, Qteish A, Winkelnkemper M, Bimberg D, Neugebauer J 2006 Appl. Phys. Lett. 89 161919Google Scholar

    [16]

    Mao H, Ou W 2015 US Patent 9 117 949

    [17]

    Zhu L, Gao M, Peh C K N, Wang X, Ho G W 2018 Adv. Energy Mater. 6 14571Google Scholar

    [18]

    Tran V T, Kim J, Tufa L T, Oh S, Kwon J, Lee J 2017 Anal. Chem. 90 225Google Scholar

    [19]

    Li C, Jiang D, Huo B, Ding M, Huang C, Jia D 2019 Nano Energy 60 841Google Scholar

    [20]

    Chen Y, Elshobaki M, Ye Z, Park J M, Noack M A, Ho K M 2013 Phys. Chem. Chem. Phys. 15 4297Google Scholar

    [21]

    Liu Y R, Shang X, Gao W K, Dong B, Li X, Li X H 2017 J. Mater. Chem. A 5 2885Google Scholar

    [22]

    Ostfeld A E, Pacifici D 2011 Appl. Phys. Lett. 98 113112.1Google Scholar

    [23]

    Cao Y, Du P, Qiao Y 2014 Appl. Phys. Lett. 105 153902.1

    [24]

    Lv Y, Cai B, Wu Y, Wang S, Jiang Q, Ma Q 2018 Journal of Energy Chemistry 27 951

    [25]

    Yu Y, Huang L, Cao L 2014 Scientific Reports 4 4107

    [26]

    Lin Q, Lu L, Tavakoli M M, Zhang C, Lui G C, Chen Z 2016 Nano Energy 22 539Google Scholar

    [27]

    Wang Y, Tang L, Mao H, Lei C, Ou W, Xiong J, Wang W, Wang L, Hu J 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS) Shanghai, China, January 24−28, 2016 p1185

    [28]

    Auer S, Frenkel D 2001 Nature 413 711Google Scholar

    [29]

    Han K M, Cho J S, Yoo J 2015 Vacuum 115 85Google Scholar

    [30]

    Linbao L, Di W, Chao X, Jigang H, Xingyuan Z, Fengxia L 2019 Adv. Funct. Mater. 29 1900849Google Scholar

    [31]

    Meng L, Zhang Y, Yam C Y 2017 J. Phys. Chem. Lett. 8 571Google Scholar

    [32]

    Shalchian M, Grisolia J, Assayag G B, Coffin H, Atarodi S M, Claverie A 2005 Appl. Phys. Lett. 86 163111Google Scholar

    [33]

    Park Y, Berger J, Tang Z, Mueller-Meskamp L, Lasagni A F, Vandewal K 2016 Appl. Phys. Lett. 109 093301Google Scholar

    [34]

    Yu A, Bumai N I, Dolgikh A A, Kharchenko V F, Valeev V I, Nuzhdin R I 2014 J. Appl. Spectrosc. 81 188Google Scholar

    [35]

    Gesquiere A J 2010 J. Am. Chem. Soc. 132 400

    [36]

    Thongrattanasiri S, Koppens F H L, Abajo F J G D 2012 Phys. Rev. Lett. 108 047401Google Scholar

    [37]

    Duan H G, Fernández-Domínguez A I, Bosman M 2012 Nano Lett. 12 1683Google Scholar

    [38]

    Hu Y, LaPierre R R, Li M 2012 J. Appl. Phys. 112 104311Google Scholar

    [39]

    Kim S K, Ee H S, Choi W, Kwon S H, Kang J H, Kim Y H 2011 Appl. Phys. Lett. 98 011109Google Scholar

    [40]

    Hillenbrand R, Taubner T, Keilmann F 2002 Nature 418 159Google Scholar

    [41]

    Zhou L, Tan Y, Ji D, Zhu B, Zhang P, Xu J 2016 Sci. Adv. 2 e1501227Google Scholar

    [42]

    Zhou L, Tan Y, Wang J 2016 Nat. Photonics 10 393Google Scholar

    [43]

    Liang J, Liu H, Yu J, Zhou L, Zhu J 2019 Nanophotonics 8 771Google Scholar

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用. 物理学报, 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 王悦, 王伦, 孙柏逊, 郎鹏, 徐洋, 赵振龙, 宋晓伟, 季博宇, 林景全. 表面等离激元与入射光共同作用下的金纳米结构近场调控. 物理学报, 2023, 72(17): 175202. doi: 10.7498/aps.72.20230514
    [3] 闫晓宏, 牛亦杰, 徐红星, 魏红. 单个等离激元纳米颗粒和纳米间隙结构与量子发光体的强耦合. 物理学报, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [4] 姜悦, 王淑英, 王治业, 周华, 卡马勒, 赵颂, 沈向前. 渔网超结构的等离激元模式及其对薄膜电池的陷光调控. 物理学报, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [5] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [6] 殷允桥, 吴宏伟. 基于人工表面等离激元结构的超表面磁镜. 物理学报, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [7] 刘亮, 韩德专, 石磊. 等离激元能带结构与应用. 物理学报, 2020, 69(15): 157301. doi: 10.7498/aps.69.20200193
    [8] 赵承祥, 郄媛, 余耀, 马荣荣, 秦俊飞, 刘彦. 等离激元增强的石墨烯光吸收. 物理学报, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [9] 谌璐, 陈跃刚. 金属-光折变材料复合全息结构对表面等离激元的波前调控. 物理学报, 2019, 68(6): 067101. doi: 10.7498/aps.68.20181664
    [10] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [11] 祁云平, 周培阳, 张雪伟, 严春满, 王向贤. 基于塔姆激元-表面等离极化激元混合模式的单缝加凹槽纳米结构的增强透射. 物理学报, 2018, 67(10): 107104. doi: 10.7498/aps.67.20180117
    [12] 王超, 李勇峰, 沈杨, 丰茂昌, 王甲富, 马华, 张介秋, 屈绍波. 基于人工表面等离激元的双通带频率选择结构设计. 物理学报, 2018, 67(20): 204101. doi: 10.7498/aps.67.20180696
    [13] 张崇磊, 辛自强, 闵长俊, 袁小聪. 表面等离激元结构光照明显微成像技术研究进展. 物理学报, 2017, 66(14): 148701. doi: 10.7498/aps.66.148701
    [14] 马平平, 张杰, 刘焕焕, 张静, 徐永刚, 王江, 张梦桥, 李永放. 金纳米棒三聚体中的等离激元诱导透明. 物理学报, 2016, 65(21): 217801. doi: 10.7498/aps.65.217801
    [15] 薛斌, 王洪阳, 秦猛, 曹毅, 王炜. 基于可调控多肽纳米管和石墨烯复合纳米结构的光吸收催化平台. 物理学报, 2015, 64(9): 098702. doi: 10.7498/aps.64.098702
    [16] 李嘉明, 唐鹏, 王佳见, 黄涛, 林峰, 方哲宇, 朱星. 阿基米德螺旋微纳结构中的表面等离激元聚焦. 物理学报, 2015, 64(19): 194201. doi: 10.7498/aps.64.194201
    [17] 张永元, 罗李娜, 张中月. 十字结构银纳米线的表面等离极化激元分束特性. 物理学报, 2015, 64(9): 097303. doi: 10.7498/aps.64.097303
    [18] 李国龙, 李进. 微纳光栅结构增强聚合物太阳能电池光吸收的研究. 物理学报, 2012, 61(20): 207204. doi: 10.7498/aps.61.207204
    [19] 宋文涛, 林峰, 方哲宇, 朱星. 线性偏振光激发的错位表面等离子体激元纳米结构聚焦. 物理学报, 2010, 59(10): 6921-6926. doi: 10.7498/aps.59.6921
    [20] 张 芸, 张波萍, 焦力实, 李向阳. Au/SiO2纳米复合薄膜的微结构及光吸收特性研究. 物理学报, 2006, 55(4): 2078-2083. doi: 10.7498/aps.55.2078
计量
  • 文章访问数:  5534
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-10
  • 修回日期:  2020-10-19
  • 上网日期:  2021-02-06
  • 刊出日期:  2021-02-20

/

返回文章
返回