搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究

曹炳阳 董若宇 孔杰 陈恒 徐雁 容启亮 蔡岸

引用本文:
Citation:

纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究

曹炳阳, 董若宇, 孔杰, 陈恒, 徐雁, 容启亮, 蔡岸

Experimental study of thermal conductivity of polyethylene nanowire arrays fabricated by the nanoporous template wetting technique

Cao Bing-Yang, Dong Ruo-Yu, Kong Jie, Chen Heng, Xu Yan, Yung Kai-Leung, Cai An
PDF
导出引用
  • 采用纳米孔模板润湿技术制备了直径为200 nm的低密度聚乙烯(LDPE)纳米线阵列, 并利用纳秒激光闪光法测量了2080℃时LDPE纳米线阵列的热导率. 测量得到室温时LDPE纳米线阵列的热导率为2.2 W/mK, 大约比其体材料的热导率高1个数量级, 并且纳米线阵列的热导率随温度的升高略有增加. 忽略纳米线之间的声子散射, 估算得到室温下单根LDPE纳米线的热导率高于5 W/mK. 本文制备LDPE纳米线热导率的提高源自其分子链定向度增加导致的低维导热效应的增强, 纳米线的分子链定向度受工艺过程中流体剪切、振动、分子链迁移运动、纳米孔约束等几种因素的综合影响.
    We fabricate low-density polyethylene (LDPE) nanowire array with a diameter of 200 nm by using a nanoporous template wetting technique, and the thermal conductivity at 2080℃ is experimentally studied by a nanosecond laser flash method. The measured thermal conductivity of the fabricated nanowire array is about 2.2 W/mK at room temperature, which is about one order of magnitude higher than its bulk counterpart. The thermal conductivity is found to increase slightly with the increase of temperature. The estimated thermal conductivity of a single LDPE nanowire is as high as 5 W/mK at room temperature. The high orientation of chain of the LDPE nanowire may arise from the integrative effects of shear rate, vibrational perturbation, translocation, nanoconfinement and crystallization. Findings in this study provide a useful strategy for enhancing the intrinsic thermal properties of polymer nanostructures.
    • 基金项目: 国家自然科学基金(批准号: 50976052, 51136001), 新世纪优秀人才支持计划, 教育部春晖计划 科研合作项目(批准号: Z2009-1-71004), 航空科学基金(批准号: 2009ZH53073)和香港研究资助局(批准号: PolyU 5347/08E)资助的课题.
    • Funds: Project supported by the National Natural Foundation of China (Grant Nos. 50976052, 51136001), the Program for New Century Excellent Talents in University, the Chun Hui Program of State Education Ministry (Grant No. Z2009-1-71004), the Aero-Science Foundation of China (Grant No. 2009ZH53073), and the Funding from the Hong Kong Research Grants Council (Grant No.PolyU 5347/08E).
    [1]

    Wang R Y, Segalman R A, Majumdar A 2006 Appl. Phys. Lett. 89 173113

    [2]

    Jin J Z, Manoharan M P, Wang Q, Haque M A 2009 Appl. Phys. Lett. 95 033113

    [3]

    Losego M D, Moh L, Arpin K A, Cahill D G, Braun P V 2010 Appl. Phys. Lett. 97 011908

    [4]

    Chen G 2000 Int. J. Thermal Sci. 39 471

    [5]

    Liang X G 2007 Chin. Sci. Bull. 52 2457

    [6]

    Cao B Y, Li Y W 2010 J. Chem. Phys. 133 024106

    [7]

    Wang Z L, Guo L J, Tang D W, Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟, Zhu Y T 2008 物理学报 57 3391]

    [8]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [9]

    Jin W, Hui N J, Qu S X 2011 Acta Phys. Sin. 60 016301 (in Chinese) [金蔚, 惠宁菊, 屈世显 2011 物理学报 60 016301]

    [10]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 物理学报 60 028103]

    [11]

    Huxtable ST, Cahill DG, Shenogin S, Xue LP, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P 2003 Nature Mater. 2 731

    [12]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [13]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [14]

    Wang Z H, Carter J A, Lagutchev A, Koh Y K, Seong N H, Cahill D G, Dlott D D 2007 Science 317 787

    [15]

    Choy C L, Fei Y, Xi T G 1993 J. Polymer Sci. B: Polymer Phys. 31 365

    [16]

    Choy C L, Wong Y W, Yang G W, Kanamoto T 1999 J. Polymer Sci. B: Polymer Phys. 37 3359

    [17]

    Fujishiro H, Ikebe M, Kashima T, Yamanaka A 1998 Jpn. J. Appl. Phys. 37 1994

    [18]

    Liu J, Yang R G 2010 Phys. Rev. B 81 174122

    [19]

    Shen S, Henry A, Tong J, Zheng RT, Chen G 2010 Nature Nanotech. 5 251

    [20]

    Steinhart M, Wendorff JH, Greiner A,Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gosele U 2002 Science 296 1997

    [21]

    Kong J, Xu Y, Yung K L, Xie YC, He L 2009 J. Phys. Chem. C 113 624

    [22]

    Rendon S, Burghardt WR, Auad M L, Kornfield J A 2007 Macromolecules 40 6624

    [23]

    Xie H Q, Cai A, Wang X W 2007 Phys. Lett. A 369 120

    [24]

    Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G 2010 Polymer 51 1614

    [25]

    Absi J, Smith D S, Nait-Ali B, Grandjean S, Berjonnaux J 2005 J. Euro. Ceram. Soc. 25 367

    [26]

    Degiovanni A 1977 Rev Gen Therm (France) 185 420

    [27]

    Lepri S, Livi R, Politi A 2003 Phys. Rep. 377 1

    [28]

    Dhar A 2008 Adv. Phys. 57 457

    [29]

    Venerus D C, Schieber J D, Balasubramanian V, Bush K, Smoukov S 2004 Phys. Rev. Lett. 93 098301

    [30]

    Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503

    [31]

    Meller A 2003 J Phys: Condens Matter 15 R581

    [32]

    Garcia-Gutierrez M C, Linares A, Hernandez J J, Rueda J J, Ezquerra T A, Poza P, Davies R J 2010Nano Lett. 10 1472

    [33]

    Mahanandia P, Schneider J J, Khaneft M, Stuhn B, Peixoto T P, Drossel B 2010 Phys. Chem. Chem. Phys. 12 4407

  • [1]

    Wang R Y, Segalman R A, Majumdar A 2006 Appl. Phys. Lett. 89 173113

    [2]

    Jin J Z, Manoharan M P, Wang Q, Haque M A 2009 Appl. Phys. Lett. 95 033113

    [3]

    Losego M D, Moh L, Arpin K A, Cahill D G, Braun P V 2010 Appl. Phys. Lett. 97 011908

    [4]

    Chen G 2000 Int. J. Thermal Sci. 39 471

    [5]

    Liang X G 2007 Chin. Sci. Bull. 52 2457

    [6]

    Cao B Y, Li Y W 2010 J. Chem. Phys. 133 024106

    [7]

    Wang Z L, Guo L J, Tang D W, Zhu Y T 2008 Acta Phys. Sin. 57 3391 (in Chinese) [王照亮, 梁金国, 唐大伟, Zhu Y T 2008 物理学报 57 3391]

    [8]

    Hou Q W, Cao B Y, Guo Z Y 2009 Acta Phys. Sin. 58 7809 (in Chinese) [侯泉文, 曹炳阳, 过增元 2009 物理学报 58 7809]

    [9]

    Jin W, Hui N J, Qu S X 2011 Acta Phys. Sin. 60 016301 (in Chinese) [金蔚, 惠宁菊, 屈世显 2011 物理学报 60 016301]

    [10]

    Bao Z G, Chen Y P, Ouyang T, Yang K K, Zhong J X 2011 60 028103 (in Chinese) [鲍志刚, 陈元平, 欧阳滔, 杨凯科, 钟建新 2011 物理学报 60 028103]

    [11]

    Huxtable ST, Cahill DG, Shenogin S, Xue LP, Ozisik R, Barone P, Usrey M, Strano MS, Siddons G, Shim M, Keblinski P 2003 Nature Mater. 2 731

    [12]

    Henry A, Chen G 2008 Phys. Rev. Lett. 101 235502

    [13]

    Henry A, Chen G 2009 Phys. Rev. B 79 144305

    [14]

    Wang Z H, Carter J A, Lagutchev A, Koh Y K, Seong N H, Cahill D G, Dlott D D 2007 Science 317 787

    [15]

    Choy C L, Fei Y, Xi T G 1993 J. Polymer Sci. B: Polymer Phys. 31 365

    [16]

    Choy C L, Wong Y W, Yang G W, Kanamoto T 1999 J. Polymer Sci. B: Polymer Phys. 37 3359

    [17]

    Fujishiro H, Ikebe M, Kashima T, Yamanaka A 1998 Jpn. J. Appl. Phys. 37 1994

    [18]

    Liu J, Yang R G 2010 Phys. Rev. B 81 174122

    [19]

    Shen S, Henry A, Tong J, Zheng RT, Chen G 2010 Nature Nanotech. 5 251

    [20]

    Steinhart M, Wendorff JH, Greiner A,Wehrspohn RB, Nielsch K, Schilling J, Choi J, Gosele U 2002 Science 296 1997

    [21]

    Kong J, Xu Y, Yung K L, Xie YC, He L 2009 J. Phys. Chem. C 113 624

    [22]

    Rendon S, Burghardt WR, Auad M L, Kornfield J A 2007 Macromolecules 40 6624

    [23]

    Xie H Q, Cai A, Wang X W 2007 Phys. Lett. A 369 120

    [24]

    Abdalla M, Dean D, Theodore M, Fielding J, Nyairo E, Price G 2010 Polymer 51 1614

    [25]

    Absi J, Smith D S, Nait-Ali B, Grandjean S, Berjonnaux J 2005 J. Euro. Ceram. Soc. 25 367

    [26]

    Degiovanni A 1977 Rev Gen Therm (France) 185 420

    [27]

    Lepri S, Livi R, Politi A 2003 Phys. Rep. 377 1

    [28]

    Dhar A 2008 Adv. Phys. 57 457

    [29]

    Venerus D C, Schieber J D, Balasubramanian V, Bush K, Smoukov S 2004 Phys. Rev. Lett. 93 098301

    [30]

    Marencic A P, Adamson D H, Chaikin P M, Register R A 2010 Phys. Rev. E 81 011503

    [31]

    Meller A 2003 J Phys: Condens Matter 15 R581

    [32]

    Garcia-Gutierrez M C, Linares A, Hernandez J J, Rueda J J, Ezquerra T A, Poza P, Davies R J 2010Nano Lett. 10 1472

    [33]

    Mahanandia P, Schneider J J, Khaneft M, Stuhn B, Peixoto T P, Drossel B 2010 Phys. Chem. Chem. Phys. 12 4407

  • [1] 刘裕芮, 许艳菲. 导热高分子聚合物研究进展. 物理学报, 2022, 71(2): 023601. doi: 10.7498/aps.71.20211876
    [2] 唐道胜, 华钰超, 周艳光, 曹炳阳. GaN薄膜的热导率模型研究. 物理学报, 2021, 70(4): 045101. doi: 10.7498/aps.70.20201611
    [3] 魏江涛, 杨亮亮, 秦源浩, 宋培帅, 张明亮, 杨富华, 王晓东. 低维纳米材料热电性能测试方法研究. 物理学报, 2021, 70(4): 047301. doi: 10.7498/aps.70.20201175
    [4] 施亨宪, 杨凯科, 骆军委. III-V族硼基化合物半导体反常热导率机理. 物理学报, 2021, 70(14): 147302. doi: 10.7498/aps.70.20210797
    [5] 方文玉, 陈粤, 叶盼, 魏皓然, 肖兴林, 黎明锴, AhujaRajeev, 何云斌. 二维XO2 (X = Ni, Pd, Pt)弹性、电子结构和热导率. 物理学报, 2021, 70(24): 246301. doi: 10.7498/aps.70.20211015
    [6] 兰生, 李焜, 高新昀. 基于分子动力学的石墨炔纳米带空位缺陷的导热特性. 物理学报, 2017, 66(13): 136801. doi: 10.7498/aps.66.136801
    [7] 贺慧芳, 陈志权. 用正电子湮没研究纳米碲化铋的缺陷及其对热导率的影响. 物理学报, 2015, 64(20): 207804. doi: 10.7498/aps.64.207804
    [8] 张程宾, 程启坤, 陈永平. 分形结构纳米复合材料热导率的分子动力学模拟研究. 物理学报, 2014, 63(23): 236601. doi: 10.7498/aps.63.236601
    [9] 郑伯昱, 董慧龙, 陈非凡. 基于量子修正的石墨烯纳米带热导率分子动力学表征方法. 物理学报, 2014, 63(7): 076501. doi: 10.7498/aps.63.076501
    [10] 李威, 冯妍卉, 唐晶晶, 张欣欣. 碳纳米管Y形分子结的热导率与热整流现象. 物理学报, 2013, 62(7): 076107. doi: 10.7498/aps.62.076107
    [11] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正. 物理学报, 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [12] 黄丛亮, 冯妍卉, 张欣欣, 李静, 王戈, 侴爱辉. 金属纳米颗粒的热导率. 物理学报, 2013, 62(2): 026501. doi: 10.7498/aps.62.026501
    [13] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [14] 杨平, 王晓亮, 李培, 王欢, 张立强, 谢方伟. 氮掺杂和空位对石墨烯纳米带热导率影响的分子动力学模拟. 物理学报, 2012, 61(7): 076501. doi: 10.7498/aps.61.076501
    [15] 黄丛亮, 冯妍卉, 张欣欣, 李威, 杨穆, 李静, 王戈. 介孔二氧化硅基导电聚合物复合材料热导率的实验研究. 物理学报, 2012, 61(15): 154402. doi: 10.7498/aps.61.154402
    [16] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [17] 王建立, 熊国平, 顾明, 张兴, 梁吉. 多壁碳纳米管/聚丙烯复合材料热导率研究. 物理学报, 2009, 58(7): 4536-4541. doi: 10.7498/aps.58.4536
    [18] 侯泉文, 曹炳阳, 过增元. 碳纳米管的热导率:从弹道到扩散输运. 物理学报, 2009, 58(11): 7809-7814. doi: 10.7498/aps.58.7809
    [19] 李世彬, 吴志明, 袁 凯, 廖乃镘, 李 伟, 蒋亚东. 氢化非晶硅薄膜的热导率研究. 物理学报, 2008, 57(5): 3126-3131. doi: 10.7498/aps.57.3126
    [20] 吴国强, 孔宪仁, 孙兆伟, 王亚辉. 氩晶体薄膜法向热导率的分子动力学模拟. 物理学报, 2006, 55(1): 1-5. doi: 10.7498/aps.55.1
计量
  • 文章访问数:  4786
  • PDF下载量:  576
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-12-29
  • 修回日期:  2011-06-26
  • 刊出日期:  2012-02-05

纳米孔模板浸润法制备聚乙烯纳米线阵列的热导率的实验研究

  • 1. 清华大学工程力学系热科学与动力工程教育部重点实验室, 北京 100084;
  • 2. 西北工业大学理学院应用化学系, 西安 710072;
  • 3. 香港理工大学工业系统工程系, 香港 九龙红磡;
  • 4. 中国科学院上海硅酸盐研究所, 上海 200050
    基金项目: 国家自然科学基金(批准号: 50976052, 51136001), 新世纪优秀人才支持计划, 教育部春晖计划 科研合作项目(批准号: Z2009-1-71004), 航空科学基金(批准号: 2009ZH53073)和香港研究资助局(批准号: PolyU 5347/08E)资助的课题.

摘要: 采用纳米孔模板润湿技术制备了直径为200 nm的低密度聚乙烯(LDPE)纳米线阵列, 并利用纳秒激光闪光法测量了2080℃时LDPE纳米线阵列的热导率. 测量得到室温时LDPE纳米线阵列的热导率为2.2 W/mK, 大约比其体材料的热导率高1个数量级, 并且纳米线阵列的热导率随温度的升高略有增加. 忽略纳米线之间的声子散射, 估算得到室温下单根LDPE纳米线的热导率高于5 W/mK. 本文制备LDPE纳米线热导率的提高源自其分子链定向度增加导致的低维导热效应的增强, 纳米线的分子链定向度受工艺过程中流体剪切、振动、分子链迁移运动、纳米孔约束等几种因素的综合影响.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回