搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于菲涅耳衍射的无透镜相干衍射成像

江浩 张新廷 国承山

引用本文:
Citation:

基于菲涅耳衍射的无透镜相干衍射成像

江浩, 张新廷, 国承山

Lensless coherent diffractive imaging with a Fresnel diffraction pattern

Jiang Hao, Zhang Xin-Ting, Guo Cheng-Shan
PDF
导出引用
  • 相干衍射成像是一种新型的无透镜成像技术, 在光学测量、显微成像和自适应光学等领域有重要应用. 本文提出一种基于单幅菲涅耳衍射强度图样的无透镜相干衍射成像方法; 该方法采用特殊设计的卷积可解阵列抽样屏, 通过对抽样物波的菲涅耳衍射强度图样进行非迭代的逆菲涅耳变换和滤波等数字处理实现被测物波复振幅信息的恢复, 最后通过数字衍射得到物体的数字再现像. 文中对抽样孔径、衍射距离、图像传感器尺寸等参数对再现像的影响进行了理论分析和模拟实验研究. 发现在针孔大小和记录孔径大小一定的条件下,存在一个最佳的衍射距离; 衍射距离过大会给重建图样带来噪声, 衍射距离过小则会使再现象的分辨率降低. 文中还对抽样针孔大小对系统成像分辨率的影响进行了分析, 为进一步开展相关实验研究和应用提供了理论依据.
    Coherent diffractive imaging is a new lensless imaging technique which has important applications in optical measurements, microscopic imaging and adaptive optics. We propose a method for coherent diffractive imaging from one single Fresnel diffraction intensity pattern. In this method, a Fresnel diffraction intensity pattern of the object wave passing through a specially designed sampling array is recorded and the complex amplitude of the object wave can be extracted through some digital processing such as inverse Fresnel transform and spatial filtering to the recorded intensity pattern; and then the image of the object can be reconstructed in computer. Some theoretical analyses and digital simulations about how the diffraction parameters affect the rebuilding image are given, such as sampling aperture, diffraction distance, image sensor size, etc. We find that there exists an optimal recording distance when the pinhole size and the recording aperture are given. Some serious noise will appear if the recording distance is longer than the optimal value, while shorter recording distance will result in a worse resolution of the reconstructed image. The influence of the pinhole size on the imaging resolution power of the system is also discussed. As this method requires only a single measurement of the diffraction intensity pattern and it does not need any iterative algorithm and lens systems, it provides a practically valuable approach to real-time wavefront measuring and lensless diffractive imaging of a complex-valued object in a wide rang of wavelengths.
    • 基金项目: 国家自然科学基金(批准号: 11074152, 10934003)和高等学校博士学科点专项科研基金 (批准号: 20113704110002)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11074152, 10934003), and the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20113704110002).
    [1]

    Li J C, Peng Z J, Patrice T, Pascal P 2010 Acta Phys. Sin. 59 4646 (in Chinese) [李俊昌, 彭祖杰, Tankam Patrice, Picart Pascal 2010 物理学报 59 4646]

    [2]

    Li J C, Fan Z B, Patrice T, Song Q H, Pascal P 2011 Acta Phys. Sin. 60 034204 (in Chinese) [李俊昌, 樊则宾, Tankam Patrice, 宋庆和, Picart Pascal 2011 物理学报 60 034204]

    [3]

    Cui H K, Wang D Y, Wang Y X, Liu C G, Zhao J, Li Y 2011 Acta Phys. Sin. 60 044201 (in Chinese) [崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳 2011 物理学报 60 044201]

    [4]

    Wu Y C, Wu X C, Wang Z H, Chen L H, Zhou H, Cen K F 2011 Acta Opt. Sin. 31 1109001 (in Chinese) [吴迎春, 吴学成, 王智化, 陈玲红, 周昊, 岑可法 2011 光学学报 31 1109001]

    [5]

    Zhang F, Pedrini G, Osten W 2007 Phys. Rev. A 75 043805

    [6]

    Lou S, Ding Z L, Yuan F 2009 Acta Opt. Sin. 29 2768 (in Chinese) [娄帅, 丁振良, 袁峰 2009 光学学报 29 2768]

    [7]

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701 (in Chinese) [周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 物理学报 60 028701]

    [8]

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701 (in Chinese) [周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 物理学报 61 018701]

    [9]

    Huang L X, Yao J, Gao F H, Chen J M, Gong A L 2010 Chin. J. Lasers 37 3066 (in Chinese) [黄利新, 姚军, 高福华, 陈剑鸣, 宫爱玲 2010 中国激光 37 3066]

    [10]

    Xu N H, Tan Q F, Jin G F 2010 Chinese J. Lasers 37 1800 (in Chinese) [徐宁汉, 谭峭峰, 金国藩 2010 中国激光 37 1800]

    [11]

    Li M, Li X Y, Jiang W H 2007 High Power Laser and Particle Beams 19 611 (in Chinese) [李敏, 李新阳, 姜文汉 2007 强激光与粒子束 19 611]

    [12]

    Wei G X, Lu L L, Guo C S, Wang H T 2009 Appl. Opt. 48 5099

    [13]

    Guo C S, Lu L L, Wei G X, He J L, Tong D M 2009 Opt. Lett. 34 1813

    [14]

    Nakajima N 2008 J. Opt. Soc. Am. A 25 742

    [15]

    Nakajima N 2011 Opt. Lett. 36 2284

    [16]

    Guo C S, Liang K, Zhang X T, Wang H T 2010 Opt. Lett. 35 850

  • [1]

    Li J C, Peng Z J, Patrice T, Pascal P 2010 Acta Phys. Sin. 59 4646 (in Chinese) [李俊昌, 彭祖杰, Tankam Patrice, Picart Pascal 2010 物理学报 59 4646]

    [2]

    Li J C, Fan Z B, Patrice T, Song Q H, Pascal P 2011 Acta Phys. Sin. 60 034204 (in Chinese) [李俊昌, 樊则宾, Tankam Patrice, 宋庆和, Picart Pascal 2011 物理学报 60 034204]

    [3]

    Cui H K, Wang D Y, Wang Y X, Liu C G, Zhao J, Li Y 2011 Acta Phys. Sin. 60 044201 (in Chinese) [崔华坤, 王大勇, 王云新, 刘长庚, 赵洁, 李艳 2011 物理学报 60 044201]

    [4]

    Wu Y C, Wu X C, Wang Z H, Chen L H, Zhou H, Cen K F 2011 Acta Opt. Sin. 31 1109001 (in Chinese) [吴迎春, 吴学成, 王智化, 陈玲红, 周昊, 岑可法 2011 光学学报 31 1109001]

    [5]

    Zhang F, Pedrini G, Osten W 2007 Phys. Rev. A 75 043805

    [6]

    Lou S, Ding Z L, Yuan F 2009 Acta Opt. Sin. 29 2768 (in Chinese) [娄帅, 丁振良, 袁峰 2009 光学学报 29 2768]

    [7]

    Zhou G Z, Tong Y J, Chen C, Ren Y Q, Wang Y D, Xiao T Q 2011 Acta Phys. Sin. 60 028701 (in Chinese) [周光照, 佟亚军, 陈灿, 任玉琦, 王玉丹, 肖体乔 2011 物理学报 60 028701]

    [8]

    Zhou G Z, Wang Y D, Ren Y Q, Chen C, Ye L L, Xiao T Q 2012 Acta Phys. Sin. 61 018701 (in Chinese) [周光照, 王玉丹, 任玉琦, 陈灿, 叶琳琳, 肖体乔 2012 物理学报 61 018701]

    [9]

    Huang L X, Yao J, Gao F H, Chen J M, Gong A L 2010 Chin. J. Lasers 37 3066 (in Chinese) [黄利新, 姚军, 高福华, 陈剑鸣, 宫爱玲 2010 中国激光 37 3066]

    [10]

    Xu N H, Tan Q F, Jin G F 2010 Chinese J. Lasers 37 1800 (in Chinese) [徐宁汉, 谭峭峰, 金国藩 2010 中国激光 37 1800]

    [11]

    Li M, Li X Y, Jiang W H 2007 High Power Laser and Particle Beams 19 611 (in Chinese) [李敏, 李新阳, 姜文汉 2007 强激光与粒子束 19 611]

    [12]

    Wei G X, Lu L L, Guo C S, Wang H T 2009 Appl. Opt. 48 5099

    [13]

    Guo C S, Lu L L, Wei G X, He J L, Tong D M 2009 Opt. Lett. 34 1813

    [14]

    Nakajima N 2008 J. Opt. Soc. Am. A 25 742

    [15]

    Nakajima N 2011 Opt. Lett. 36 2284

    [16]

    Guo C S, Liang K, Zhang X T, Wang H T 2010 Opt. Lett. 35 850

  • [1] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2022, 71(4): 044202. doi: 10.7498/aps.71.20211509
    [2] 麻永俊, 李睿晅, 李逵, 张光银, 钮津, 麻云凤, 柯长军, 鲍捷, 陈英爽, 吕春, 李捷, 樊仲维, 张晓世. 基于高次谐波X射线光源的三维纳米相干衍射成像技术. 物理学报, 2022, 71(16): 164205. doi: 10.7498/aps.71.20220976
    [3] 单明广, 刘翔宇, 庞成, 钟志, 于蕾, 刘彬, 刘磊. 结合线性回归的离轴数字全息去载波相位恢复算法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211509
    [4] 周静, 张晓芳, 赵延庚. 一种基于图像融合和卷积神经网络的相位恢复方法. 物理学报, 2021, 70(5): 054201. doi: 10.7498/aps.70.20201362
    [5] 吴迪, 蒋子珍, 喻欢欢, 张晨爽, 张娇, 林丹樱, 于斌, 屈军乐. 基于分数阶螺旋相位片的定量相位显微成像. 物理学报, 2021, 70(15): 158702. doi: 10.7498/aps.70.20201884
    [6] 许文慧, 宁守琮, 张福才. 部分相干衍射成像综述. 物理学报, 2021, 70(21): 214201. doi: 10.7498/aps.70.20211020
    [7] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [8] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术. 物理学报, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [9] 陈家祯, 郑子华, 叶锋, 连桂仁, 许力. 三维物体多重菲涅耳计算全息水印与无干扰可控重建方法. 物理学报, 2017, 66(23): 234202. doi: 10.7498/aps.66.234202
    [10] 戚俊成, 陈荣昌, 刘宾, 陈平, 杜国浩, 肖体乔. 基于迭代重建算法的X射线光栅相位CT成像. 物理学报, 2017, 66(5): 054202. doi: 10.7498/aps.66.054202
    [11] 李元杰, 何小亮, 孔艳, 王绶玙, 刘诚, 朱健强. 基于电子束剪切干涉的PIE成像技术研究. 物理学报, 2017, 66(13): 134202. doi: 10.7498/aps.66.134202
    [12] 余伟, 何小亮, 刘诚, 朱健强. 非相干照明条件下的ptychographic iterative engine成像技术. 物理学报, 2015, 64(24): 244201. doi: 10.7498/aps.64.244201
    [13] 何小亮, 刘诚, 王继成, 王跃科, 高淑梅, 朱健强. PIE成像中周期性重建误差的研究. 物理学报, 2014, 63(3): 034208. doi: 10.7498/aps.63.034208
    [14] 刘宏展, 纪越峰. 一种基于角谱理论的改进型相位恢复迭代算法. 物理学报, 2013, 62(11): 114203. doi: 10.7498/aps.62.114203
    [15] 杨振亚, 郑楚君. 基于压缩传感的纯相位物体相位恢复. 物理学报, 2013, 62(10): 104203. doi: 10.7498/aps.62.104203
    [16] 刘诚, 潘兴臣, 朱健强. 基于光栅分光法的相干衍射成像. 物理学报, 2013, 62(18): 184204. doi: 10.7498/aps.62.184204
    [17] 邬融, 华能, 张晓波, 曹国威, 赵东峰, 周申蕾. 高能量效率的大口径多台阶衍射光学元件. 物理学报, 2012, 61(22): 224202. doi: 10.7498/aps.61.224202
    [18] 范家东, 江怀东. 相干X射线衍射成像技术及在材料学和生物学中的应用. 物理学报, 2012, 61(21): 218702. doi: 10.7498/aps.61.218702
    [19] 黄燕萍, 祁春媛. 用相位恢复方法测量多孔光纤的三维折射率分布. 物理学报, 2006, 55(12): 6395-6398. doi: 10.7498/aps.55.6395
    [20] 于 斌, 彭 翔, 田劲东, 牛憨笨. 硬x射线同轴相衬成像的相位恢复. 物理学报, 2005, 54(5): 2034-2037. doi: 10.7498/aps.54.2034
计量
  • 文章访问数:  9009
  • PDF下载量:  1584
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-09
  • 修回日期:  2012-06-17
  • 刊出日期:  2012-12-05

基于菲涅耳衍射的无透镜相干衍射成像

  • 1. 山东师范大学物理与电子科学学院, 济南 250014
    基金项目: 国家自然科学基金(批准号: 11074152, 10934003)和高等学校博士学科点专项科研基金 (批准号: 20113704110002)资助的课题.

摘要: 相干衍射成像是一种新型的无透镜成像技术, 在光学测量、显微成像和自适应光学等领域有重要应用. 本文提出一种基于单幅菲涅耳衍射强度图样的无透镜相干衍射成像方法; 该方法采用特殊设计的卷积可解阵列抽样屏, 通过对抽样物波的菲涅耳衍射强度图样进行非迭代的逆菲涅耳变换和滤波等数字处理实现被测物波复振幅信息的恢复, 最后通过数字衍射得到物体的数字再现像. 文中对抽样孔径、衍射距离、图像传感器尺寸等参数对再现像的影响进行了理论分析和模拟实验研究. 发现在针孔大小和记录孔径大小一定的条件下,存在一个最佳的衍射距离; 衍射距离过大会给重建图样带来噪声, 衍射距离过小则会使再现象的分辨率降低. 文中还对抽样针孔大小对系统成像分辨率的影响进行了分析, 为进一步开展相关实验研究和应用提供了理论依据.

English Abstract

参考文献 (16)

目录

    /

    返回文章
    返回