搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超导量子比特的耦合研究进展

赵娜 刘建设 李铁夫 陈炜

引用本文:
Citation:

超导量子比特的耦合研究进展

赵娜, 刘建设, 李铁夫, 陈炜

Progress of coupled superconducting qubits

Zhao Na, Liu Jian-She, Li Tie-Fu, Chen Wei
PDF
导出引用
  • 超导量子比特以其在可控性、低损耗以及可扩展性等方面的优势被认为是最有希望实现量子计算机的固态方式之一. 量子比特之间的相干可控耦合是实现大规模的量子计算的必要条件. 本文介绍了超导量子比特耦合方式的研究进展, 包括利用电容或电感实现量子比特的局域耦合, 着重介绍一维传输线谐振腔作为量子总线实现多个量子比特的可控耦合的电路量子电动力学体系, 并对最新的三维腔与超导量子比特的耦合结构的研究进展进行了论述. 对各种耦合体系的哈密顿量进行了比较详细的分析, 并按照局域性和可控性对不同耦合机制进行了分类.
    Quantum system based on superconducting circuit is considered as one of the most promising schemes to realize quantum computers due to its controllability, low dissipation and scalability. To implement large scale quantum computation, coherent coupling between qubits is crucial for controlling and transferring quantum states. In this review paper, we summarize the progress of coupled superconducting qubits, including local coupling via capacitance or inductance, multiple qubits coherent interaction through one-dimensional resonator as circuit quantum electrodynamics, and superconducting qubits in a three-dimensional waveguide cavity. Hamiltonians of various coupling schemes are analyzed and classification of these coupling structures is summarized based on the coupling range and tunability.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00304)和国家自然科学基金(批准号: 60836001)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2011CBA00304) and the National Natural Science Foundation of China (Grant No. 60836001).
    [1]

    Nielsen M A, Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge Univ. Press) p 1

    [2]

    Josephson B D 1962 Phys. Lett. 1 251

    [3]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786

    [4]

    Yu Y, Han S Y, Chu X, Chu S I, Wang Z 2002 Science 296 889

    [5]

    Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869

    [6]

    Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V, Tsai J S 2003 Nature 421 823

    [7]

    Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y, Tsai J S 2003 Nature 425 941

    [8]

    Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J, Wellstood F C 2003 Science 300 1548

    [9]

    Majer J B, Paauw F G, ter Haar A, Harmans C, Mooij J E 2005 Phys. Rev. Lett. 94 090501

    [10]

    Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, Negrevergne C, Pravia M, Sharf Y, Teklemariam G, Weinstein Y S, Zurek W H 2000 Fortschr. Phys. 48 875

    [11]

    Hime T, Reichardt P A, Plourde B L T, Robertson T L, Wu C E, Ustinov A V, Clarke J 2006 Science 314 1427

    [12]

    van der Ploeg S H W, Izmalkov A, van den Brink A M, Hubner U, Grajcar M, Ilíchev E, Meyer H G, Zagoskin A M 2007 Phys. Rev. Lett. 98 057004

    [13]

    Harris R, Berkley A J, Johnson M W, Bunyk P, Govorkov S, Thom M C, Uchaikin S, Wilson A B, Chung J, Holtham E, Biamonte J D, Smirnov A Yu, Amin M H S, van den Brink A M 2007 Phys. Rev. Lett. 98 177001

    [14]

    Fay A, Hoskinson E, Lecocq F, Levy L P, Hekking F W J, Guichard W, Buisson O 2008 Phys. Rev. Lett. 100 187003

    [15]

    Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S, Tsai J S 2007 Science 316 723

    [16]

    You J Q, Tsai J S, Nori F 2002 Phys. Rev. Lett. 89 197902

    [17]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [18]

    Schoelkopf R J, Girvin S M 2008 Nature 451 664

    [19]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [20]

    Haroche S 1992 Fundamental Systems in Quantum Optics (New York: Elsevier) p 767

    [21]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [22]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [23]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501

    [24]

    Brune M, Nussenzveig P, Schmidt K F, Bernardot F, Maali A, Raimond J M, Haroche S 1994 Phys. Rev. Lett. 72 3339

    [25]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [26]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [27]

    Braginsky V B, Khalili F Y 1996 Rev. Mod. Phys. 68 1

    [28]

    Abdumalikov A A, Astafiev O, Nakamura Y, Pashkin Y A, Tsai J S 2008 Phys. Rev. B 78 180502

    [29]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [30]

    Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H, Schoelkopf R J 2007 Phys. Rev. A 75 032329

    [31]

    DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [32]

    Sillanpaa M A, Park J I, Simmonds R W 2007 Nature 449 438

    [33]

    DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [34]

    Mariantoni M, Wang H, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Martinis J M, Cleland A N, 2011 Nat. Phys. 7 287

    [35]

    Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Cleland A N, Martinis J M 2008 Phys. Rev. Lett. 101 240401

    [36]

    Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Martinis J M, Cleland A N 2009 Nature 459 546

    [37]

    Gao J S, Zmuidzinas J, Mazin B A, LeDuc H G, Day P K 2007 Appl. Phys. Lett. 90 102507

    [38]

    Chen W, Bennett D A, Patel V, Lukens J E 2008 Supercond. Sci. Technol. 21 075013

    [39]

    Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N, Martinis J M 2009 Appl. Phys. Lett. 95 233508

    [40]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501

    [41]

    Gao J S, Daal M, Vayonakis A, Kumar S, Zmuidzinas J, Sadoulet B, Mazin B A, Day P K, Leduc H G 2008 Appl. Phys. Lett. 92 152505

    [42]

    O'Connell A D, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, McKenney C, Neeley M, Wang H, Weig E M, Cleland A N, Martinis J M 2008 Appl. Phys. Lett. 92 112903

    [43]

    Rigetti C, Poletto S, Gambetta J M, Plourde B, Chow J M, Corcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B, Steffen M 2012 arXiv: 1202. 5533v1 [quant-ph]

    [44]

    Riste D, Leeuwen J, Ku H S, Lehnert K W, DiCarlo L 2012 arXiv:1204. 2479v1 [cond-mat. mes-hall]

    [45]

    Houck A A, Schuster D I, Gambetta J M, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [46]

    Fragner A, Göppl M, Fink J M, Baur M, Bianchetti R, Leek P J, Blais A, Wallraff A 2008 Science 322 1357

    [47]

    Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A, Wallraff A 2008 Nature 454 315

    [48]

    Johnson B R, Reed M D, Houck A A, Schuster D I, Bishop L S, Ginossar E, Gambetta J M, DiCarlo L, Frunzio L, Girvin S M, Schoelkopf R J 2010 Nat. Phys. 6 663

  • [1]

    Nielsen M A, Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge Univ. Press) p 1

    [2]

    Josephson B D 1962 Phys. Lett. 1 251

    [3]

    Nakamura Y, Pashkin Y A, Tsai J S 1999 Nature 398 786

    [4]

    Yu Y, Han S Y, Chu X, Chu S I, Wang Z 2002 Science 296 889

    [5]

    Chiorescu I, Nakamura Y, Harmans C J, Mooij J E 2003 Science 299 1869

    [6]

    Pashkin Y A, Yamamoto T, Astafiev O, Nakamura Y, Averin D V, Tsai J S 2003 Nature 421 823

    [7]

    Yamamoto T, Pashkin Y A, Astafiev O, Nakamura Y, Tsai J S 2003 Nature 425 941

    [8]

    Berkley A J, Xu H, Ramos R C, Gubrud M A, Strauch F W, Johnson P R, Anderson J R, Dragt A J, Lobb C J, Wellstood F C 2003 Science 300 1548

    [9]

    Majer J B, Paauw F G, ter Haar A, Harmans C, Mooij J E 2005 Phys. Rev. Lett. 94 090501

    [10]

    Cory D G, Laflamme R, Knill E, Viola L, Havel T F, Boulant N, Boutis G, Fortunato E, Lloyd S, Martinez R, Negrevergne C, Pravia M, Sharf Y, Teklemariam G, Weinstein Y S, Zurek W H 2000 Fortschr. Phys. 48 875

    [11]

    Hime T, Reichardt P A, Plourde B L T, Robertson T L, Wu C E, Ustinov A V, Clarke J 2006 Science 314 1427

    [12]

    van der Ploeg S H W, Izmalkov A, van den Brink A M, Hubner U, Grajcar M, Ilíchev E, Meyer H G, Zagoskin A M 2007 Phys. Rev. Lett. 98 057004

    [13]

    Harris R, Berkley A J, Johnson M W, Bunyk P, Govorkov S, Thom M C, Uchaikin S, Wilson A B, Chung J, Holtham E, Biamonte J D, Smirnov A Yu, Amin M H S, van den Brink A M 2007 Phys. Rev. Lett. 98 177001

    [14]

    Fay A, Hoskinson E, Lecocq F, Levy L P, Hekking F W J, Guichard W, Buisson O 2008 Phys. Rev. Lett. 100 187003

    [15]

    Niskanen A O, Harrabi K, Yoshihara F, Nakamura Y, Lloyd S, Tsai J S 2007 Science 316 723

    [16]

    You J Q, Tsai J S, Nori F 2002 Phys. Rev. Lett. 89 197902

    [17]

    Blais A, Huang R S, Wallraff A, Girvin S M, Schoelkopf R J 2004 Phys. Rev. A 69 062320

    [18]

    Schoelkopf R J, Girvin S M 2008 Nature 451 664

    [19]

    Jaynes E T, Cummings F W 1963 Proc. IEEE 51 89

    [20]

    Haroche S 1992 Fundamental Systems in Quantum Optics (New York: Elsevier) p 767

    [21]

    Raimond J, Brune M, Haroche S 2001 Rev. Mod. Phys. 73 565

    [22]

    Schuster D I, Houck A A, Schreier J A, Wallraff A, Gambetta J M, Blais A, Frunzio L, Majer J, Johnson B, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 445 515

    [23]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 95 060501

    [24]

    Brune M, Nussenzveig P, Schmidt K F, Bernardot F, Maali A, Raimond J M, Haroche S 1994 Phys. Rev. Lett. 72 3339

    [25]

    Schuster D I, Wallraff A, Blais A, Frunzio L, Huang R S, Majer J, Girvin S M, Schoelkopf R J 2005 Phys. Rev. Lett. 94 123602

    [26]

    Wallraff A, Schuster D I, Blais A, Frunzio L, Huang R S, Majer J, Kumar S, Girvin S M, Schoelkopf R J 2004 Nature 431 162

    [27]

    Braginsky V B, Khalili F Y 1996 Rev. Mod. Phys. 68 1

    [28]

    Abdumalikov A A, Astafiev O, Nakamura Y, Pashkin Y A, Tsai J S 2008 Phys. Rev. B 78 180502

    [29]

    Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R, Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff A, Blais A, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 443

    [30]

    Blais A, Gambetta J, Wallraff A, Schuster D I, Girvin S M, Devoret M H, Schoelkopf R J 2007 Phys. Rev. A 75 032329

    [31]

    DiCarlo L, Chow J M, Gambetta J M, Bishop L S, Johnson B R, Schuster D I, Majer J, Blais A, Frunzio L, Girvin S M, Schoelkopf R J 2009 Nature 460 240

    [32]

    Sillanpaa M A, Park J I, Simmonds R W 2007 Nature 449 438

    [33]

    DiCarlo L, Reed M D, Sun L, Johnson B R, Chow J M, Gambetta J M, Frunzio L, Girvin S M, Devoret M H, Schoelkopf R J 2010 Nature 467 574

    [34]

    Mariantoni M, Wang H, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Wenner J, Yamamoto T, Yin Y, Zhao J, Martinis J M, Cleland A N, 2011 Nat. Phys. 7 287

    [35]

    Wang H, Hofheinz M, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Cleland A N, Martinis J M 2008 Phys. Rev. Lett. 101 240401

    [36]

    Hofheinz M, Wang H, Ansmann M, Bialczak R C, Lucero E, Neeley M, O'Connell A D, Sank D, Wenner J, Martinis J M, Cleland A N 2009 Nature 459 546

    [37]

    Gao J S, Zmuidzinas J, Mazin B A, LeDuc H G, Day P K 2007 Appl. Phys. Lett. 90 102507

    [38]

    Chen W, Bennett D A, Patel V, Lukens J E 2008 Supercond. Sci. Technol. 21 075013

    [39]

    Wang H, Hofheinz M, Wenner J, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, O'Connell A D, Sank D, Weides M, Cleland A N, Martinis J M 2009 Appl. Phys. Lett. 95 233508

    [40]

    Paik H, Schuster D I, Bishop L S, Kirchmair G, Catelani G, Sears A P, Johnson B R, Reagor M J, Frunzio L, Glazman L I, Girvin S M, Devoret M H, Schoelkopf R J 2011 Phys. Rev. Lett. 107 240501

    [41]

    Gao J S, Daal M, Vayonakis A, Kumar S, Zmuidzinas J, Sadoulet B, Mazin B A, Day P K, Leduc H G 2008 Appl. Phys. Lett. 92 152505

    [42]

    O'Connell A D, Ansmann M, Bialczak R C, Hofheinz M, Katz N, Lucero E, McKenney C, Neeley M, Wang H, Weig E M, Cleland A N, Martinis J M 2008 Appl. Phys. Lett. 92 112903

    [43]

    Rigetti C, Poletto S, Gambetta J M, Plourde B, Chow J M, Corcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B, Steffen M 2012 arXiv: 1202. 5533v1 [quant-ph]

    [44]

    Riste D, Leeuwen J, Ku H S, Lehnert K W, DiCarlo L 2012 arXiv:1204. 2479v1 [cond-mat. mes-hall]

    [45]

    Houck A A, Schuster D I, Gambetta J M, Schreier J A, Johnson B R, Chow J M, Frunzio L, Majer J, Devoret M H, Girvin S M, Schoelkopf R J 2007 Nature 449 328

    [46]

    Fragner A, Göppl M, Fink J M, Baur M, Bianchetti R, Leek P J, Blais A, Wallraff A 2008 Science 322 1357

    [47]

    Fink J M, Göppl M, Baur M, Bianchetti R, Leek P J, Blais A, Wallraff A 2008 Nature 454 315

    [48]

    Johnson B R, Reed M D, Houck A A, Schuster D I, Bishop L S, Ginossar E, Gambetta J M, DiCarlo L, Frunzio L, Girvin S M, Schoelkopf R J 2010 Nat. Phys. 6 663

  • [1] 姜达, 余东洋, 郑沾, 曹晓超, 林强, 刘伍明. 面向量子计算的拓扑超导体材料、物理和器件研究. 物理学报, 2022, 71(16): 160302. doi: 10.7498/aps.71.20220596
    [2] 王美红, 郝树宏, 秦忠忠, 苏晓龙. 连续变量量子计算和量子纠错研究进展. 物理学报, 2022, 71(16): 160305. doi: 10.7498/aps.71.20220635
    [3] 王晨旭, 贺冉, 李睿睿, 陈炎, 房鼎, 崔金明, 黄运锋, 李传锋, 郭光灿. 量子计算与量子模拟中离子阱结构研究进展. 物理学报, 2022, 71(13): 133701. doi: 10.7498/aps.71.20220224
    [4] 周宗权. 量子存储式量子计算机与无噪声光子回波. 物理学报, 2022, 71(7): 070305. doi: 10.7498/aps.71.20212245
    [5] 王宁, 王保传, 郭国平. 硅基半导体量子计算研究进展. 物理学报, 2022, 71(23): 230301. doi: 10.7498/aps.71.20221900
    [6] 裴思辉, 宋子旋, 林星, 方伟. 开放式法布里-珀罗光学微腔中光与单量子系统的相互作用. 物理学报, 2022, 71(6): 060201. doi: 10.7498/aps.71.20211970
    [7] 徐达, 王逸璞, 李铁夫, 游建强. 微波驱动下超导量子比特与磁振子的相干耦合. 物理学报, 2022, 71(15): 150302. doi: 10.7498/aps.71.20220260
    [8] 宿非凡, 杨钊华, 赵寿宽, 严海生, 田野, 赵士平. 铌基超导量子比特及辅助器件的制备. 物理学报, 2022, 71(5): 050303. doi: 10.7498/aps.71.20211865
    [9] 张结印, 高飞, 张建军. 硅和锗量子计算材料研究进展. 物理学报, 2021, 70(21): 217802. doi: 10.7498/aps.70.20211492
    [10] 张诗豪, 张向东, 李绿周. 基于测量的量子计算研究进展. 物理学报, 2021, 70(21): 210301. doi: 10.7498/aps.70.20210923
    [11] 何映萍, 洪健松, 刘雄军. 马约拉纳零能模的非阿贝尔统计及其在拓扑量子计算的应用. 物理学报, 2020, 69(11): 110302. doi: 10.7498/aps.69.20200812
    [12] 于宛让, 计新. 基于超绝热捷径技术快速制备超导三量子比特Greenberger-Horne-Zeilinger态. 物理学报, 2019, 68(3): 030302. doi: 10.7498/aps.68.20181922
    [13] 范桁. 量子计算与量子模拟. 物理学报, 2018, 67(12): 120301. doi: 10.7498/aps.67.20180710
    [14] 赵士平, 刘玉玺, 郑东宁. 新型超导量子比特及量子物理问题的研究. 物理学报, 2018, 67(22): 228501. doi: 10.7498/aps.67.20180845
    [15] 潘健, 余琦, 彭新华. 多量子比特核磁共振体系的实验操控技术. 物理学报, 2017, 66(15): 150302. doi: 10.7498/aps.66.150302
    [16] 文瑞娟, 杜金锦, 李文芳, 李刚, 张天才. 内腔多原子直接俘获的强耦合腔量子力学系统的构建. 物理学报, 2014, 63(24): 244203. doi: 10.7498/aps.63.244203
    [17] 卢道明. 腔量子电动力学系统中耦合三原子的纠缠特性. 物理学报, 2014, 63(6): 060301. doi: 10.7498/aps.63.060301
    [18] 赵虎, 李铁夫, 刘建设, 陈炜. 基于超导量子比特的电磁感应透明研究进展. 物理学报, 2012, 61(15): 154214. doi: 10.7498/aps.61.154214
    [19] 叶 宾, 须文波, 顾斌杰. 量子Harper模型的量子计算鲁棒性与耗散退相干. 物理学报, 2008, 57(2): 689-695. doi: 10.7498/aps.57.689
    [20] 叶 宾, 谷瑞军, 须文波. 周期驱动的Harper模型的量子计算鲁棒性与量子混沌. 物理学报, 2007, 56(7): 3709-3718. doi: 10.7498/aps.56.3709
计量
  • 文章访问数:  6442
  • PDF下载量:  7489
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-05-15
  • 修回日期:  2012-07-30
  • 刊出日期:  2013-01-05

超导量子比特的耦合研究进展

  • 1. 清华大学微电子学研究所, 北京 100084;
  • 2. 清华信息科学与技术国家实验室, 北京 100084
    基金项目: 国家重点基础研究发展计划(批准号: 2011CBA00304)和国家自然科学基金(批准号: 60836001)资助的课题.

摘要: 超导量子比特以其在可控性、低损耗以及可扩展性等方面的优势被认为是最有希望实现量子计算机的固态方式之一. 量子比特之间的相干可控耦合是实现大规模的量子计算的必要条件. 本文介绍了超导量子比特耦合方式的研究进展, 包括利用电容或电感实现量子比特的局域耦合, 着重介绍一维传输线谐振腔作为量子总线实现多个量子比特的可控耦合的电路量子电动力学体系, 并对最新的三维腔与超导量子比特的耦合结构的研究进展进行了论述. 对各种耦合体系的哈密顿量进行了比较详细的分析, 并按照局域性和可控性对不同耦合机制进行了分类.

English Abstract

参考文献 (48)

目录

    /

    返回文章
    返回