搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究

李娟 汝强 孙大伟 张贝贝 胡社军 侯贤华

引用本文:
Citation:

锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究

李娟, 汝强, 孙大伟, 张贝贝, 胡社军, 侯贤华

The lithium intercalation properties of SnSb/MCMB core-shell composite as the anode material for lithium ion battery

Li Juan, Ru Qiang, Sun Da-Wei, Zhang Bei-Bei, Hu She-Jun, Hou Xian-Hua
PDF
导出引用
  • 以酸处理的中间相碳微球(MCMB)为载体, 用化学还原法在碳球表面沉积SnSb合金, 合成SnSb 包覆碳球的核壳结构负极材料. 采用XRD, SEM技术对材料的结构和形貌进行了表征, 用恒电流充放电(CC)、循环伏安(CV)和交流阻抗(EIS)测试了材料的电化学性能. 实验结果表明: SnSb/MCMB样品呈现纳米晶与非晶态的混合组织; 单一SnSb合金的容量衰减较快, 而对于SnSb/MCMB复合材料, 细小的合金颗粒均匀钉扎在MCMB表面, 不仅改善了颗粒的团聚现象, 而且增强了材料的导电能力, 使材料的循环稳定性得到改善, 复合材料具有936.161 mAh/g的首次放电比容量, 首次库仑效率80.3%, 50次循环后容量维持在498.221 mAh/g.
    SnSb/MCMB composite material was prepared by multi-step synthesis methods. Mesocarbon Microbeads (MCMB) powders were modified by acid treatment firstly, and then SnSb nano particles were deposited on the surface of MCMB through chemical reduction method forming a core-shell composite structure. To characterize the phase and morphology of the composites material, X-ray diffraction (XRD), scanning electron microscope (SEM) were used. The constant current charge and discharge (CD) and cyclic volt ampere (CV) methods were also used to test the electrochemical performance of SnSb/MCMB. The results demonstrated that SnSb/MCMB presents a multiphase system of nanocrystalline and amorphous structure. The capacity attenuation of SnSb alloy is faster than that of SnSb/MCMB. For the SnSb/MCMB composite, the tiny alloy particles were dispersed on the surface of MCMB powders, preventing from the serious agglomeration of nano particles. At the same time, the inner core MCMB can also buffering the volume effect of the alloy compoites to improve the elecrtochemical cycling stability. The composite material was a first discharge specific capacity of 936.161 mAh/g and the first Coulomb efficiency 80.3%. The specific capacity was still up to 498.221 mAh/g after 50 cycles.
    • 基金项目: 国家自然科学基金(批准号:51101062),广州市科技计划项目(批准号:2011J4100075)和广东高校优秀青年创新人才培育项目(批准号:LYM09052)资助课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grat No. 51101062), Science and Technology Project of Guangzhou City (Grat No. 2011J4100075), and the Foundation for Distinguished Young Talents in Higher Education of Guangdong (Grat No. LYM09052).
    [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [3]

    Cakan R D, Titirici M M, Antonietti M, Cui G L, Maier J, Hu Y S 2008 Chem. Commun. 32 3759

    [4]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [5]

    Chen J S, Li C M, Zhou W W, Yan Q Y, Archer L A, Lou X W 2009 Nanoscale 1 280

    [6]

    Paek S M, Kang J H, Jung H, Hwang S J, Choy J H 2009 Chem. Commun. 48 7536

    [7]

    Fang X P, Lu X, Guo X W, Mao Y, Hu Y S, Wang J Z, Wang Z X, Wu F, Liu H K, Chen L Q 2010 Electrochem. Commun. 12 1520

    [8]

    Zhao H L, Zhu Z M, Yin C L, Guo H, Wu H L 2008 Mater. Chem. Phys. 110 201

    [9]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [10]

    Nuli Y N, Yang J, Jiang M S 2008 Mater. Lett. 62 2092

    [11]

    Wang X Y, Wen Z Y, Yang X L, Lin B 2008 Solid State Ionics 179 1238

    [12]

    Wang F, Zhao M S, Song X P 2008 J. Power Sources 175 558

    [13]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [14]

    Yang C G, Zhang D W, Zhao Y B, Lu Y H, Wang L, Goodenough J B 2011 J. Power Sources 196 10673

    [15]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [16]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [17]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 693 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 693]

    [18]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [19]

    Li H, Shi L H, Lu W, Huang X J, Chen L Q 2001 J. Electrochem. Soc. 148 A915

    [20]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [21]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [22]

    Dailly A, Ghanbaja J, Willmann P, Billaud D 2004 J. Power Sources 136 281

    [23]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [24]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [25]

    Buiel E, Dahn J R 1999 Electrochim. Acta 45 121

    [26]

    Sun H, Pu W H, He X M, Li J J, Jiang C Y, Wan C R 2005 New Chemical Materials 33 7 (in Chinese) [孙颢, 蒲薇华, 何向明, 李建军, 姜长印, 万春荣 2005 化工新型材料 33 7]

    [27]

    Ein-Eli Y, Koch V R 1997 J. Electrochem. Soc. 144 2968

    [28]

    Liu Z L, Yu A S, Lee J Y 1999 J. Power Sources 81-82 187

    [29]

    Kim J S, Park Y T 2000 J. Power Sources 91 172

    [30]

    Kim J S, Yoon W Y, Yoo K S, Park G S, Lee C W, Murakami Y, Shindo D 2002 J. Power Sources 104 175

    [31]

    Han P X, Yue Y H, Zhang L X, Xu H X, Liu Z H, Zhang K J, Zhang C J, Dong S M, Ma W, Cui G L 2012 Carbon 50 1355

    [32]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [33]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer Ch, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [34]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [35]

    Huang K L, Zhang G, Liu S Q, Yang S 2006 Chinese J. Inorg. Chem. 22 2075(in Chinese) [黄可龙, 张戈, 刘素琴, 杨赛 2006 无机化学学报 22 2075]

    [36]

    Wolfenstine J, Campos S, Foster D, Read J, Behl W K 2002 J. Power Sources 109 230

    [37]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 111 329

    [38]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [39]

    Mao O, Dunlap R A, Dahn J R 1999 J. Electrochem. Soc. 146 405

    [40]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [41]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 Adv. Mater. 20 3169

  • [1]

    Scrosati B 1995 Nature 373 557

    [2]

    Datta M K, Kumta P N 2007 J. Power Sources 165 368

    [3]

    Cakan R D, Titirici M M, Antonietti M, Cui G L, Maier J, Hu Y S 2008 Chem. Commun. 32 3759

    [4]

    Jo Y N, Kim Y, Kim J S, Song J H, Kim K J, Kwag C Y, Lee D J, Park C W, Kim Y J 2010 J. Power Sources 195 6031

    [5]

    Chen J S, Li C M, Zhou W W, Yan Q Y, Archer L A, Lou X W 2009 Nanoscale 1 280

    [6]

    Paek S M, Kang J H, Jung H, Hwang S J, Choy J H 2009 Chem. Commun. 48 7536

    [7]

    Fang X P, Lu X, Guo X W, Mao Y, Hu Y S, Wang J Z, Wang Z X, Wu F, Liu H K, Chen L Q 2010 Electrochem. Commun. 12 1520

    [8]

    Zhao H L, Zhu Z M, Yin C L, Guo H, Wu H L 2008 Mater. Chem. Phys. 110 201

    [9]

    Morcrette M, Larcher D, Tarascon J M, Edström K, Vaughey J T, Thackeray M M 2007 Electrochim. Acta 52 5339

    [10]

    Nuli Y N, Yang J, Jiang M S 2008 Mater. Lett. 62 2092

    [11]

    Wang X Y, Wen Z Y, Yang X L, Lin B 2008 Solid State Ionics 179 1238

    [12]

    Wang F, Zhao M S, Song X P 2008 J. Power Sources 175 558

    [13]

    Mukaibo H, Momma T, Osaka T 2005 J. Power Sources 146 457

    [14]

    Yang C G, Zhang D W, Zhao Y B, Lu Y H, Wang L, Goodenough J B 2011 J. Power Sources 196 10673

    [15]

    Simonin L, Lafont U, Kelder E M 2008 J. Power Sources 180 859

    [16]

    Zhang S C, Xing Y L, Jiang T, Du Z J, Li F, He L, Liu W B 2011 J. Power Sources 196 6915

    [17]

    Hou X H, Yu H W, Hu S J 2010 Acta Phys. Sin. 59 693 (in Chinese) [侯贤华, 余洪文, 胡社军 2010 物理学报 59 693]

    [18]

    Wachtler M, Winter M, Besenhard J O 2002 J. Power Sources 105 151

    [19]

    Li H, Shi L H, Lu W, Huang X J, Chen L Q 2001 J. Electrochem. Soc. 148 A915

    [20]

    Marcinek M, Hardwick L J, Richardson T J, Song X, Kostecki R 2007 J. Power Sources 173 965

    [21]

    Liu Y, Xie J Y, Yang J 2003 J. Power Sources 119-121 572

    [22]

    Dailly A, Ghanbaja J, Willmann P, Billaud D 2004 J. Power Sources 136 281

    [23]

    Wu X D, Wang Z X, Chen L Q, Huang X J 2004 Carbon 42 1965

    [24]

    Li H, Wang Q, Shi L H, Chen L Q, Huang X J 2002 Chem. Mater. 14 103

    [25]

    Buiel E, Dahn J R 1999 Electrochim. Acta 45 121

    [26]

    Sun H, Pu W H, He X M, Li J J, Jiang C Y, Wan C R 2005 New Chemical Materials 33 7 (in Chinese) [孙颢, 蒲薇华, 何向明, 李建军, 姜长印, 万春荣 2005 化工新型材料 33 7]

    [27]

    Ein-Eli Y, Koch V R 1997 J. Electrochem. Soc. 144 2968

    [28]

    Liu Z L, Yu A S, Lee J Y 1999 J. Power Sources 81-82 187

    [29]

    Kim J S, Park Y T 2000 J. Power Sources 91 172

    [30]

    Kim J S, Yoon W Y, Yoo K S, Park G S, Lee C W, Murakami Y, Shindo D 2002 J. Power Sources 104 175

    [31]

    Han P X, Yue Y H, Zhang L X, Xu H X, Liu Z H, Zhang K J, Zhang C J, Dong S M, Ma W, Cui G L 2012 Carbon 50 1355

    [32]

    Balan L, Schneider R, Billaud D, Lambert J, Ghanbaja J 2005 Mater. Lett. 59 2898

    [33]

    Trifonova A, Wachtler M, Wagner M R, Schroettner H, Mitterbauer Ch, Hofer F, Möller K C, Winter M, Besenhard J O 2004 Solid State Ionics 168 51

    [34]

    Hassoun J, Derrien G, Panero S, Scrosati B 2009 Electrochim. Acta 54 4441

    [35]

    Huang K L, Zhang G, Liu S Q, Yang S 2006 Chinese J. Inorg. Chem. 22 2075(in Chinese) [黄可龙, 张戈, 刘素琴, 杨赛 2006 无机化学学报 22 2075]

    [36]

    Wolfenstine J, Campos S, Foster D, Read J, Behl W K 2002 J. Power Sources 109 230

    [37]

    Wu Y P, Jiang C, Wan C, Holze R 2002 J. Power Sources 111 329

    [38]

    Ru Q, Tian Q, Hu S J, Zhao L Z 2011 Int. J. Miner. Metall. Mater. 18 216

    [39]

    Mao O, Dunlap R A, Dahn J R 1999 J. Electrochem. Soc. 146 405

    [40]

    Derrien G, Hassoun J, Panero S, Scrosati B 2007 Adv. Mater. 19 2336

    [41]

    Hassoun J, Derrien G, Panero S, Scrosati B 2008 Adv. Mater. 20 3169

  • [1] 李晓杰, 喻云泰, 张志文, 董小瑞. 基于电化学老化衰退模型的锂离子动力电池外特性. 物理学报, 2022, 71(3): 038803. doi: 10.7498/aps.71.20211401
    [2] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2022, 71(4): 048201. doi: 10.7498/aps.71.20211619
    [3] 谢奕展, 程夕明. 一种求解锂离子电池单粒子模型液相扩散方程的新方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211619
    [4] 李涛, 程夕明, 胡晨华. 锂离子电池电化学降阶模型性能对比. 物理学报, 2021, 70(13): 138801. doi: 10.7498/aps.70.20201894
    [5] 张永泉, 姚安权, 杨柳, 朱凯, 曹殿学. 水系镁离子电池正极材料钠锰氧化物的制备及电化学性能. 物理学报, 2021, 70(16): 168201. doi: 10.7498/aps.70.20202130
    [6] 柳小伟, 宋辉, 郭美卿, 王根伟, 迟青卓. 基于电化学-应力耦合模型的锂离子电池硅/碳核壳结构的模拟与优化. 物理学报, 2021, 70(17): 178201. doi: 10.7498/aps.70.20210455
    [7] 曾建邦, 郭雪莹, 刘立超, 沈祖英, 单丰武, 罗玉峰. 基于电化学-热耦合模型研究隔膜孔隙结构对锂离子电池性能的影响机制. 物理学报, 2019, 68(1): 018201. doi: 10.7498/aps.68.20181726
    [8] 蒋梅燕, 朱政杰, 陈成克, 李晓, 胡晓君. 硫离子注入纳米金刚石薄膜的微结构和电化学性能. 物理学报, 2019, 68(14): 148101. doi: 10.7498/aps.68.20190394
    [9] 王桂强, 刘洁琼, 董伟楠, 阎超, 张伟. 氮/硫共掺杂多孔碳纳米片的制备及其电化学性能. 物理学报, 2018, 67(23): 238103. doi: 10.7498/aps.67.20181524
    [10] 庞辉. 基于电化学模型的锂离子电池多尺度建模及其简化方法. 物理学报, 2017, 66(23): 238801. doi: 10.7498/aps.66.238801
    [11] 杨秀涛, 梁忠冠, 袁雨佳, 阳军亮, 夏辉. 多孔碳纳米球的制备及其电化学性能. 物理学报, 2017, 66(4): 048101. doi: 10.7498/aps.66.048101
    [12] 王锐, 胡晓君. 氧离子注入纳米金刚石薄膜的微结构和电化学性能研究. 物理学报, 2014, 63(14): 148102. doi: 10.7498/aps.63.148102
    [13] 陈畅, 汝强, 胡社军, 安柏楠, 宋雄. Co2SnO4/Graphene复合材料的制备与电化学性能研究. 物理学报, 2014, 63(19): 198201. doi: 10.7498/aps.63.198201
    [14] 李娟, 汝强, 胡社军, 郭凌云. 锂离子电池SnSb/C复合负极材料的热碳还原法制备及电化学性能研究. 物理学报, 2014, 63(16): 168201. doi: 10.7498/aps.63.168201
    [15] 黄乐旭, 陈远富, 李萍剑, 黄然, 贺加瑞, 王泽高, 郝昕, 刘竞博, 张万里, 李言荣. 氧化石墨制备温度对石墨烯结构及其锂离子电池性能的影响. 物理学报, 2012, 61(15): 156103. doi: 10.7498/aps.61.156103
    [16] 彭薇, 岳敏, 梁奇, 胡社军, 侯贤华. 锂离子电池LiMn1-xFexPO4(0x<1)正极材料的制备及性能研究. 物理学报, 2011, 60(3): 038202. doi: 10.7498/aps.60.038202
    [17] 白莹, 王蓓, 张伟风. 熔融盐法合成锂离子电池正极材料纳米LiNiO2. 物理学报, 2011, 60(6): 068202. doi: 10.7498/aps.60.068202
    [18] 白莹, 丁玲红, 张伟风. ZnFe2O4的固相法和水热法制备及其电化学性能研究. 物理学报, 2011, 60(5): 058201. doi: 10.7498/aps.60.058201
    [19] 侯贤华, 余洪文, 胡社军. 锂离子电池Sn-Al薄膜电极的制备及电化学性能研究. 物理学报, 2010, 59(11): 8226-8230. doi: 10.7498/aps.59.8226
    [20] 侯贤华, 胡社军, 石璐. 锂离子电池Sn-Ti合金负极材料的制备及性能研究. 物理学报, 2010, 59(3): 2109-2113. doi: 10.7498/aps.59.2109
计量
  • 文章访问数:  3964
  • PDF下载量:  10219
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-10-24
  • 修回日期:  2013-01-10
  • 刊出日期:  2013-05-05

锂离子电池SnSb/MCMB核壳结构负极材料嵌锂性能研究

  • 1. 广东省高等学校量子信息技术重点实验室, 华南师范大学物理与电信工程学院, 广州 510006;
  • 2. 电化学储能材料与技术教育部工程研究中心, 广州 510006
    基金项目: 国家自然科学基金(批准号:51101062),广州市科技计划项目(批准号:2011J4100075)和广东高校优秀青年创新人才培育项目(批准号:LYM09052)资助课题.

摘要: 以酸处理的中间相碳微球(MCMB)为载体, 用化学还原法在碳球表面沉积SnSb合金, 合成SnSb 包覆碳球的核壳结构负极材料. 采用XRD, SEM技术对材料的结构和形貌进行了表征, 用恒电流充放电(CC)、循环伏安(CV)和交流阻抗(EIS)测试了材料的电化学性能. 实验结果表明: SnSb/MCMB样品呈现纳米晶与非晶态的混合组织; 单一SnSb合金的容量衰减较快, 而对于SnSb/MCMB复合材料, 细小的合金颗粒均匀钉扎在MCMB表面, 不仅改善了颗粒的团聚现象, 而且增强了材料的导电能力, 使材料的循环稳定性得到改善, 复合材料具有936.161 mAh/g的首次放电比容量, 首次库仑效率80.3%, 50次循环后容量维持在498.221 mAh/g.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回