搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矢量声纳高速运动目标稳健高分辨方位估计

梁国龙 马巍 范展 王逸林

引用本文:
Citation:

矢量声纳高速运动目标稳健高分辨方位估计

梁国龙, 马巍, 范展, 王逸林

A high resolution robust localization approach of high speed target based on vector sonar

Liang Guo-Long, Ma Wei, Fan Zhan, Wang Yi-Lin
PDF
导出引用
  • 针对水声矢量信号处理框架中的高速运动目标低信噪 比小快拍条件下的稳健高分辨方位估计问题, 将压缩感知技术应用于水声矢量信号空间谱估计模型中. 结合声矢量传感器结构特性, 探讨了基于声压振速联合处理的广义时域滤波方法; 结合矩阵空域预滤波理论, 设计了基于阻带约束通带均方误差最大值最小的空域滤波器, 研究了矢量声纳空域预滤波方法; 结合以上分析, 提出了基于压缩感知技术的时空联合滤波高分辨方位估计方法, 给出了方法的数学模型、物理解释及具体实施步骤.理论分析和计算机仿真试验表明, 新方法对于小快拍数 条件下的矢量声纳高速运动目标高分辨方位估计问题, 具有较低的双目标分辨门限和较高的估计精度, 有着良好的应用前景.湖上试验验证了方法的有效性.
    Based on high speed moving target robust high-resolution direction of arrival (DOA) estimation problem under low signal-to-noise ratio and a small number of snapshots in the underwater acoustic vector signal processing framework, a novel spatial spectrum model combined with compressive sensing method is proposed. By studying the acoustic vector sensor structure, a generalized temporal filtering method based on sound pressure and particle velocity combined treatment is presented. According to the matrix spatial prefiltering theory, a new spatial filter with stopband constraint and mean square error min-max principle in passband is proposed which is used as vector sonar spatial prefiltering algorithm. Based on the methods above, a novel time-space domain jointly filtering high-resolution DOA estimation algorithm based on compressive sensing is proposed. The mathematical model, physical interpretation, and specific implement are explained in detail. Theoretical analysis and computer simulation results show that the new method has a lower dual-target distinguishing threshold and a higher estimation accuracy in solving the vector sonar high speed moving target robust DOA estimation problem under a small number of snapshots (single snapshot) condition. The higher robustness and better results of the proposed method are verified in the lake experiment.
    • 基金项目: 国家自然科学基金(批准号: 51279043)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51279043).
    [1]

    Nehorai A, Paldi E 1994 IEEE Trans. on SP 42 2481

    [2]

    Hui J Y, Liu H, Yu H B, Fan M Y 2000 Acta Acustica 25 303 (in Chinese) [惠俊英, 刘宏, 余华兵, 范敏毅 2000 声学学报 25 303]

    [3]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 4302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 4302]

    [4]

    Yang S E 2003 J. Harbin Engin. Univ. 24 591 (in Chinese) [杨士莪 2003 哈尔滨工程大学学报 24 591]

    [5]

    Wu Y Q 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [吴艳群 2011 博士学位论文 (长沙: 国防科学技术大学)]

    [6]

    Sun G Q, Li Q H 2004 Acta Acustica 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 24 491]

    [7]

    Chen X H 2004 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [陈新华 2004 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [8]

    Schmidt R O 1986 IEEE Trans. on AP 34 276

    [9]

    Capon J 1969 Proceedings of the IEEE 57 1408

    [10]

    Roy R, Kailath T 1989 IEEE Trans. on ASAP 37 984

    [11]

    Sarkar T K, Sangruji N 1989 IEEE Trans. on ASAP 37 940

    [12]

    Sarkar T K 2003 Smart Antennas (1st Ed.) (New Jersey: John Wiley & Sons Inc.) p52

    [13]

    Sarkar T K, Koh J, Adve R, Schneible R A, Wicks M C, Choi S, Salazar-Palma M 2000 Antennas and Propagation Magazine 42 39

    [14]

    Sarkar T K, Sangruji N, Micheal C W 1998 Digital Signal Processing 8 114

    [15]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [16]

    Candes E J, Walkin M B 2008 IEEE Signal Processing Magazine 25 21

    [17]

    Candes E J, Romberg, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [18]

    Candes E J, Tao T 2006 IEEE Trans. Inform. Theory 52 5406

    [19]

    Candes E J, Romberg, Tao T 2006 Comm. Pure Appl. Math. 59 1207

    [20]

    Malioutov D M 2003 M. S. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [21]

    Malioutov D M, Cetin M, Willsky A S 2005 IEEE Trans. on SP 53 3010

    [22]

    Fu J S 2012 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [付金山 2012 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [23]

    Yan S F, Ma Y L 2006 Sci. China Inf. Sci. 36 153 (in Chinese) [鄢社锋, 马远良 2006 中国科学·信息科学 36 153]

    [24]

    Gershman A B 1998 IEEE Trans. on SP. 44 361

  • [1]

    Nehorai A, Paldi E 1994 IEEE Trans. on SP 42 2481

    [2]

    Hui J Y, Liu H, Yu H B, Fan M Y 2000 Acta Acustica 25 303 (in Chinese) [惠俊英, 刘宏, 余华兵, 范敏毅 2000 声学学报 25 303]

    [3]

    Shi J, Yang D S, Shi S G 2012 Acta Phys. Sin. 61 4302 (in Chinese) [时洁, 杨德森, 时胜国 2012 物理学报 61 4302]

    [4]

    Yang S E 2003 J. Harbin Engin. Univ. 24 591 (in Chinese) [杨士莪 2003 哈尔滨工程大学学报 24 591]

    [5]

    Wu Y Q 2011 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [吴艳群 2011 博士学位论文 (长沙: 国防科学技术大学)]

    [6]

    Sun G Q, Li Q H 2004 Acta Acustica 29 491 (in Chinese) [孙贵青, 李启虎 2004 声学学报 24 491]

    [7]

    Chen X H 2004 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [陈新华 2004 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [8]

    Schmidt R O 1986 IEEE Trans. on AP 34 276

    [9]

    Capon J 1969 Proceedings of the IEEE 57 1408

    [10]

    Roy R, Kailath T 1989 IEEE Trans. on ASAP 37 984

    [11]

    Sarkar T K, Sangruji N 1989 IEEE Trans. on ASAP 37 940

    [12]

    Sarkar T K 2003 Smart Antennas (1st Ed.) (New Jersey: John Wiley & Sons Inc.) p52

    [13]

    Sarkar T K, Koh J, Adve R, Schneible R A, Wicks M C, Choi S, Salazar-Palma M 2000 Antennas and Propagation Magazine 42 39

    [14]

    Sarkar T K, Sangruji N, Micheal C W 1998 Digital Signal Processing 8 114

    [15]

    Donoho D L 2006 IEEE Trans. Inform. Theory 52 1289

    [16]

    Candes E J, Walkin M B 2008 IEEE Signal Processing Magazine 25 21

    [17]

    Candes E J, Romberg, Tao T 2006 IEEE Trans. Inform. Theory 52 489

    [18]

    Candes E J, Tao T 2006 IEEE Trans. Inform. Theory 52 5406

    [19]

    Candes E J, Romberg, Tao T 2006 Comm. Pure Appl. Math. 59 1207

    [20]

    Malioutov D M 2003 M. S. Dissertation (Cambridge: Massachusetts Institute of Technology)

    [21]

    Malioutov D M, Cetin M, Willsky A S 2005 IEEE Trans. on SP 53 3010

    [22]

    Fu J S 2012 Ph. D. Dissertation (Harbin: Harbin Engineering University) (in Chinese) [付金山 2012 博士学位论文 (哈尔滨: 哈尔滨工程大学)]

    [23]

    Yan S F, Ma Y L 2006 Sci. China Inf. Sci. 36 153 (in Chinese) [鄢社锋, 马远良 2006 中国科学·信息科学 36 153]

    [24]

    Gershman A B 1998 IEEE Trans. on SP. 44 361

  • [1] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2022, 71(5): 050101. doi: 10.7498/aps.71.20211504
    [2] 姜思仪, 付宁, 乔立岩, 彭喜元. 基于L型延迟阵列调制宽带转换器的信号载频和二维到达角联合估计. 物理学报, 2021, 70(8): 084303. doi: 10.7498/aps.70.20201312
    [3] 曹海燕, 叶震宇. 基于压缩感知理论的大规模MIMO系统下行信道估计中的导频优化理论分析与算法设计. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211504
    [4] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法. 物理学报, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [5] 康志伟, 吴春艳, 刘劲, 马辛, 桂明臻. 基于两级压缩感知的脉冲星时延估计方法. 物理学报, 2018, 67(9): 099701. doi: 10.7498/aps.67.20172100
    [6] 冷雪冬, 王大鸣, 巴斌, 王建辉. 基于渐进添边的准循环压缩感知时延估计算法. 物理学报, 2017, 66(9): 090703. doi: 10.7498/aps.66.090703
    [7] 李慧, 赵琳, 李亮. 基于贝叶斯压缩感知的周跳探测与修复方法. 物理学报, 2016, 65(24): 249101. doi: 10.7498/aps.65.249101
    [8] 庄佳衍, 陈钱, 何伟基, 冒添逸. 基于压缩感知的动态散射成像. 物理学报, 2016, 65(4): 040501. doi: 10.7498/aps.65.040501
    [9] 时洁, 杨德森, 时胜国, 胡博, 朱中锐. 基于压缩感知的矢量阵聚焦定位方法. 物理学报, 2016, 65(2): 024302. doi: 10.7498/aps.65.024302
    [10] 李广明, 吕善翔. 混沌信号的压缩感知去噪. 物理学报, 2015, 64(16): 160502. doi: 10.7498/aps.64.160502
    [11] 梁国龙, 陶凯, 王晋晋, 范展. 声矢量阵宽带目标波束域变换广义似然比检测算法. 物理学报, 2015, 64(9): 094303. doi: 10.7498/aps.64.094303
    [12] 康荣宗, 田鹏武, 于宏毅. 一种基于选择性测量的自适应压缩感知方法. 物理学报, 2014, 63(20): 200701. doi: 10.7498/aps.63.200701
    [13] 陈明生, 王时文, 马韬, 吴先良. 基于压缩感知的目标频空电磁散射特性快速分析. 物理学报, 2014, 63(17): 170301. doi: 10.7498/aps.63.170301
    [14] 张新鹏, 胡茑庆, 程哲, 钟华. 基于压缩感知的振动数据修复方法. 物理学报, 2014, 63(20): 200506. doi: 10.7498/aps.63.200506
    [15] 王哲, 王秉中. 压缩感知理论在矩量法中的应用. 物理学报, 2014, 63(12): 120202. doi: 10.7498/aps.63.120202
    [16] 李龙珍, 姚旭日, 刘雪峰, 俞文凯, 翟光杰. 基于压缩感知超分辨鬼成像. 物理学报, 2014, 63(22): 224201. doi: 10.7498/aps.63.224201
    [17] 马原, 吕群波, 刘扬阳, 钱路路, 裴琳琳. 基于主成分变换的图像稀疏度估计方法. 物理学报, 2013, 62(20): 204202. doi: 10.7498/aps.62.204202
    [18] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [19] 冯丙辰, 方晟, 张立国, 李红, 童节娟, 李文茜. 基于压缩感知理论的非线性γ谱分析方法. 物理学报, 2013, 62(11): 112901. doi: 10.7498/aps.62.112901
    [20] 白旭, 李永强, 赵生妹. 基于压缩感知的差分关联成像方案研究. 物理学报, 2013, 62(4): 044209. doi: 10.7498/aps.62.044209
计量
  • 文章访问数:  3390
  • PDF下载量:  754
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-11-28
  • 修回日期:  2013-01-31
  • 刊出日期:  2013-07-05

矢量声纳高速运动目标稳健高分辨方位估计

  • 1. 哈尔滨工程大学, 水声技术重点实验室, 哈尔滨 150001
    基金项目: 国家自然科学基金(批准号: 51279043)资助的课题.

摘要: 针对水声矢量信号处理框架中的高速运动目标低信噪 比小快拍条件下的稳健高分辨方位估计问题, 将压缩感知技术应用于水声矢量信号空间谱估计模型中. 结合声矢量传感器结构特性, 探讨了基于声压振速联合处理的广义时域滤波方法; 结合矩阵空域预滤波理论, 设计了基于阻带约束通带均方误差最大值最小的空域滤波器, 研究了矢量声纳空域预滤波方法; 结合以上分析, 提出了基于压缩感知技术的时空联合滤波高分辨方位估计方法, 给出了方法的数学模型、物理解释及具体实施步骤.理论分析和计算机仿真试验表明, 新方法对于小快拍数 条件下的矢量声纳高速运动目标高分辨方位估计问题, 具有较低的双目标分辨门限和较高的估计精度, 有着良好的应用前景.湖上试验验证了方法的有效性.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回