-
在考虑光学微腔中高阶色散效应的情况下,以耦合非线性薛定谔方程为理论模型,研究了高阶色散作用下双耦合微腔内克尔光频梳的稳定性和非线性动力学,并讨论了各阶色散参数对腔内光场演化和光谱特性的影响.理论分析结果表明,三阶色散的加入使得参量空间的稳定域扩大,周期性变化的呼吸孤子态和混沌态转变为稳定的亮孤子态.此外,各高阶色散项及其组合对光频梳的光谱特性包括最大失谐、腔内脉冲峰值功率、色散波频谱位置等有显著影响.具体地,三阶色散和正四阶色散能够展宽光谱,增强色散波;而负四阶色散抑制色散波产生,得到对称的孤子频率梳;五阶色散可以调控光孤子的漂移方向和速度.理论研究结果对于双耦合微腔实验中的色散调控及设计、稳定性研究具有重要价值.We investigate the stability and nonlinear dynamics of the Kerr optical frequency comb inside the dual coupled microcavities with high-order dispersion effect based on the theoretical model of coupled nonlinear Schrödinger equations. The effect of different high-order dispersion parameters on the evolution and spectral characteristics of the optical field in the cavity is also explored. Theoretical results indicate that the addition of the third-order dispersion enlarges the stability domain of the parametric space and transforms the periodically varying soliton breathers and chaos into stable bright soliton. In order to obtain an accurate Kerr optical frequency comb spectral envelope, higher order dispersion should be considered. Moreover, high-order dispersion terms have a significant effect on the spectral characteristics of the optical frequency comb, such as the spectral envelope frequency shift and the dispersive wave spectral position. Specifically, the third-order dispersion and positive fourth-order dispersion can broaden the spectrum and enhance the dispersive waves; while the negative fourth-order dispersion can suppress the dispersive wave generation and obtain a symmetric soliton frequency comb; the fifth-order dispersion can regulate the drift direction and speed of the optical solitons. The theoretical results are of great value for dispersion regulation and design and stability studies in double-coupled microcavity experiments.
-
Keywords:
- Lasers /
- Nonlinear optics /
- Optical microcavities
-
[1] Newman Z L, Maurice V, Drake T, Stone J R, Briles T C, Spencer D T, Fredrick C, Li Q, Westly D, Ilic B R, Shen B, Suh M-G, Yang K Y, Johnson C, Johnson D M S, Hollberg L, Vahala K J, Srinivasan K, Diddams S A, Kitching J, Papp S B, Hummon M T 2019Optica 6680
[2] Torres-Company V, Weiner A M 2014Laser & Photonics Reviews 8 368
[3] Trocha P, Karpov M, Ganin D, Pfeiffer M H P, Kordts A, Wolf S, Krockenberger J, Marin-Palomo P, Weimann C, Randel S, Freude W, Kippenberg T J, Koos C 2018Science 359 887
[4] Cruz F C, Maser D L, Johnson T, Ycas G, Klose A, Giorgetta F R, Coddington I, Diddams S A 2015Opt Express 23 26814
[5] Kippenberg T J, Holzwarth R, Diddams S A 2011Science 332 555
[6] Coillet A, Balakireva I, Henriet R, Saleh K, Larger L, Dudley J M, Menyuk C R, Chembo Y K 2013IEEE Photonics Journal 5 6100409
[7] Matsko A B, Liang W, Savchenkov A A, Maleki L 2013Opt Lett 38 525
[8] Xue X, Xuan Y, Liu Y, Wang P-H, Chen S, Wang J, Leaird D E, Qi M, Weiner A M 2015Nature Photonics 9 594
[9] Kippenberg T J, Gaeta A L, Lipson M, Gorodetsky M L 2018Science 361567
[10] Tikan A, Wang R N, Riemensberger J, Liu J, Seidler P, Komagata K, Kippenberg T J, Hönl S, Churaev M, Skehan C, Guo H 2021Nature Physics 17 604
[11] Tikan A, Tusnin A, Riemensberger J, Churaev M, Ji X, Komagata K N, Wang R N, Liu J, Kippenberg T J 2022SCIENCE ADVANCES 8 6982
[12] Brasch V, Herr T, Geiselmann M, Lihachev G, Pfeiffer M H P, Gorodetsky M L, Kippenberg T J 2015Science 351 357
[13] Parra-Rivas P, Gomila D, Leo F, Coen S, Gelens L 2014Opt Lett 39 2971
[14] Okawachi Y, Lamont M R, Luke K, Carvalho D O, Yu M, Lipson M, Gaeta A L 2014Opt Lett 39 3535
[15] A. V. Cherenkov, Lobanov V E, Gorodetsky M L 2017Physical Review A 95033810
[16] Xue X, Zheng X, Zhou B 2019Nature Photonics 13 616
[17] Maes B, Fiers M, Bienstman P 2009Physical Review A 80033805
[18] Xu X, Jin X, Lu Y, Gao H, Cheng J, Yu L 2020Journal of Optics 22 115501
[19] Xue X, Zheng X, Zhou B 2019Nature Photonics 13 616
[20] Xu Y, Coen S 2014Optics Letters 393492
[21] Wang J, Zhou R, Lai D, Che K, Chen L, Jiang S, Xu H, Cai Z 2019IEEE Photonics Technology Letters 31 1175
[22] Dinyari K N, Barbour R J, Golter D A, Wang H 2011Opt Express 19 17966
[23] Milian C, Skryabin D V 2014Opt Express 22 3732
[24] Leo F, Mussot A, Kockaert P, Emplit P, Haelterman M, Taki M 2013Phys Rev Lett 110 104103
[25] Mussot A, Louvergneaux E, Akhmediev N, Reynaud F, Delage L, Taki M 2008Phys Rev Lett 101 113904
[26] Gomila D, Scroggie A J, Firth W J 2007Physica D:Nonlinear Phenomena 227 70
[27] He Y, Wang S, Zeng X 2016IEEE Photonics Journal 8 1
[28] Bao C, Taheri H, Zhang L, Matsko A, Yan Y, Liao P, Maleki L, Willner A E 2017Journal of the Optical Society of America B 34715
[29] Roy S, Bhadra S K, Agrawal G P 2009OPTICS LETTERS 34 2072
[30] Skryabin D V, Luan F, Knight J C, Russell P S J 2003Science 301 1705
[31] Taheri H, Eftekhar A A, Wiesenfeld K, Adibi A 2015IEEE 7 2200309
[32] Milián C, Gorbach A V, Taki M, Yulin A V, Skryabin D V 2015Physical Review A 92033851
计量
- 文章访问数: 163
- PDF下载量: 5
- 被引次数: 0