搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自加速类贝塞尔-厄米-高斯光束的理论和实验研究

赵娟莹 邓冬梅 张泽 刘京郊 姜东升

引用本文:
Citation:

自加速类贝塞尔-厄米-高斯光束的理论和实验研究

赵娟莹, 邓冬梅, 张泽, 刘京郊, 姜东升

Theoretical and experimental study on self-accelerating Bessel-like Hermite-Gaussian beams

Zhao Juan-Ying, Deng Dong-Mei, Zhang Ze, Liu Jing-Jiao, Jiang Dong-Sheng
PDF
导出引用
  • 空间相位调制一直是设计新型自加速光束的重要方法. 参照类贝塞尔光束产生的思路,从理论上提出了一种新型的自加速无衍射类贝塞尔-厄米-高斯光束,并从数值模拟和实验两个方面研究此光束沿不同轨道的演化. 理论上通过对厄米-高斯光束进行相位调制,产生了不同模式的自加速类贝塞尔-厄米-高斯光束. 采用分步傅里叶算法模拟了(0,1),(1,0),(1,1)和(1,2)阶类贝塞尔-厄米-高斯光束沿预设轨道的传输过程. 采用计算全息和空间光调制技术在实验中观察了类贝塞尔-厄米-高斯光束沿预设轨道的传输,例如抛物、双曲、双曲正割和三维轨道. 实验观察与理论结果符合得很好. 实验验证了不同阶类贝塞尔-厄米-高斯光束的奇特光斑结构,验证了光束的非衍射特性及传输轨道的可控性,且理论模拟验证了光束的自修复特性. 作为此前研究的类贝塞尔光束的一般形式,本文所得到的光束可用于构造出更加新型实用的光束.
    Phase modulation is an important method of designing accelerating optical beams. In this paper, we present new self-accelerating non-diffracting Bessel-like Hermite-Gaussian beams based on our previous research on Bessel-like beams. The evolutions of the beams along different trajectories are studied numerically and experimentally. These beams are designed by modulating the phase of the initial Hermite-Gaussian beams. With the split-step beam propagation method, we show numerically that (0,1), (1,0), (1,1) and (1,2) modes of the Bessel-like Hermite-Gaussian beams can propagate along different predesigned trajectories. With the computer-generated hologram and spatial light modulator, we observe the propagating behaviors of the Bessel-like Hermite-Gaussian beams along different trajectories, including parabolic, hyperbolic, hyperbolic secant and 3D trajectories. Experimental results show good agreement with the theoretical prediction. It is also demonstrated that the peculiar profile of Bessel-like Hermite-Gaussian beams exhibits nondiffracting and self-healing properties propagating along the tunable trajectories. These beams generalize the concept of Bessel-like beams, suggesting that more exotic optical beams can be obtained.
    • 基金项目: 国家重点基础研究发展计划(批准号:2013CB632703)、国家自然科学基金(批准号:11374108, 10904041)、广东省优秀博士学位论文作者专项基金(批准号:SYBZZXM201227)和国家留学基金资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2013CB632703), the National Natural Science Foundation of China (Grant Nos. 11374108, 10904041), the Foundation for the Authors of Excellent Doctoral Dissertation of Guangdong Province, China (Grant No. SYBZZXM201227), and the Postgraduate Scholarship Program of China.
    [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Hu Y, Siviloglo G A, Zhang P, Efremidis N K, Christodoulides D N, Chen Z G 2012 Nonlinear Photonics and Novel Optical Phenomena (1st Ed.) (New York: Springer) p1

    [5]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [6]

    Zhang P, Hu Y, Li T C, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [7]

    Aleahmad P, Miri M A, Mills M S, Kaminer I, Segev M, Christodoulides D N 2012 Phys. Rev. Lett. 109 203902

    [8]

    Bandres M A 2008 Opt. Lett. 33 1678

    [9]

    Rosen J, Yariv A 1995 Opt. Lett. 20 2042

    [10]

    Sun Q G, Zhou K Y, Fang G Y, Liu Z J, Liu S T 2012 Chin. Phys. B 21 014208

    [11]

    Hu Y, Bongiovanni D, Chen Z G, Morandotti R 2013 Opt. Lett. 38 3387

    [12]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045

    [13]

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209 (in Chinese) [张泽, 刘京郊, 张鹏, 倪培根, Prakash J, 胡毅, 姜东升, Christodoulides D N, 陈志刚 2013 物理学报 62 034209]

    [14]

    Hwang C, Kim K, Lee B 2011 Opt. Express 19 7356

    [15]

    Guo C S, Wang S Z, Rong Z Y, Sha B 2013 Acta Phys. Sin. 62 084201 (in Chinese) [国承山, 王淑贞, 荣振宇, 沙贝 2013 物理学报 62 084201]

    [16]

    Won R, Dholakia K 2008 Nature Photon. 2 702

    [17]

    Zhang P, Prakash J, Zhang Z, Kajorndej V, Efremidis N K, Christodoulides D N, Chen Z G 2011 Opt. Lett. 36 2883

    [18]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nature Photon. 2 675

    [19]

    Baumgartl J, Hannappel G M, Stevenson D J, Day D, Gu M, Dholakia K 2009 Lab. Chip. 9 1334

    [20]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [21]

    Chremmos I D, Chen Z G, Christodoulides D N, Efremidis N K 2012 Opt. Lett. 37 5003

    [22]

    Zhao J Y, Zhang P, Deng D M, Liu J J, Gao Y M, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z G 2013 Opt. Lett. 38 498

    [23]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (San Diego: Academic Press) p51

    [24]

    Hu Y, Zhang P, Lou C B, Huang S, Xu J J, Chen Z G 2010 Opt. Lett. 35 2260

    [25]

    Beijersbergen M W, Allen L, van der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123

    [26]

    Tidwell S C, Ford D H, Kimura W D 1990 Appl. Opt. 29 2234

    [27]

    Passilly N, de Saint Denis R, Aït-Ameur K, Treussart F, Hierle R, Roch J F 2005 J. Opt. Soc. Am. A 22 984

    [28]

    Xin J T, Gao C Q, Li C 2012 Sci. Sin. Phys. Mech. Astron. doi: 10.1360/132012-417 (in Chinese) [辛璟焘, 高春清, 李辰 2012中国科学: 物理学 力学 天文学 doi: 10.1360/132012-417]

  • [1]

    Berry M V, Balazs N L 1979 Am. J. Phys. 47 264

    [2]

    Siviloglou G A, Christodoulides D N 2007 Opt. Lett. 32 979

    [3]

    Siviloglou G A, Broky J, Dogariu A, Christodoulides D N 2007 Phys. Rev. Lett. 99 213901

    [4]

    Hu Y, Siviloglo G A, Zhang P, Efremidis N K, Christodoulides D N, Chen Z G 2012 Nonlinear Photonics and Novel Optical Phenomena (1st Ed.) (New York: Springer) p1

    [5]

    Kaminer I, Bekenstein R, Nemirovsky J, Segev M 2012 Phys. Rev. Lett. 108 163901

    [6]

    Zhang P, Hu Y, Li T C, Cannan D, Yin X B, Morandotti R, Chen Z G, Zhang X 2012 Phys. Rev. Lett. 109 193901

    [7]

    Aleahmad P, Miri M A, Mills M S, Kaminer I, Segev M, Christodoulides D N 2012 Phys. Rev. Lett. 109 203902

    [8]

    Bandres M A 2008 Opt. Lett. 33 1678

    [9]

    Rosen J, Yariv A 1995 Opt. Lett. 20 2042

    [10]

    Sun Q G, Zhou K Y, Fang G Y, Liu Z J, Liu S T 2012 Chin. Phys. B 21 014208

    [11]

    Hu Y, Bongiovanni D, Chen Z G, Morandotti R 2013 Opt. Lett. 38 3387

    [12]

    Efremidis N K, Christodoulides D N 2010 Opt. Lett. 35 4045

    [13]

    Zhang Z, Liu J J, Zhang P, Ni P G, Prakash J, Hu Y, Jiang D S, Christodoulides D N, Chen Z G 2013 Acta Phys. Sin. 62 034209 (in Chinese) [张泽, 刘京郊, 张鹏, 倪培根, Prakash J, 胡毅, 姜东升, Christodoulides D N, 陈志刚 2013 物理学报 62 034209]

    [14]

    Hwang C, Kim K, Lee B 2011 Opt. Express 19 7356

    [15]

    Guo C S, Wang S Z, Rong Z Y, Sha B 2013 Acta Phys. Sin. 62 084201 (in Chinese) [国承山, 王淑贞, 荣振宇, 沙贝 2013 物理学报 62 084201]

    [16]

    Won R, Dholakia K 2008 Nature Photon. 2 702

    [17]

    Zhang P, Prakash J, Zhang Z, Kajorndej V, Efremidis N K, Christodoulides D N, Chen Z G 2011 Opt. Lett. 36 2883

    [18]

    Baumgartl J, Mazilu M, Dholakia K 2008 Nature Photon. 2 675

    [19]

    Baumgartl J, Hannappel G M, Stevenson D J, Day D, Gu M, Dholakia K 2009 Lab. Chip. 9 1334

    [20]

    Polynkin P, Kolesik M, Moloney J V, Siviloglou G A, Christodoulides D N 2009 Science 324 229

    [21]

    Chremmos I D, Chen Z G, Christodoulides D N, Efremidis N K 2012 Opt. Lett. 37 5003

    [22]

    Zhao J Y, Zhang P, Deng D M, Liu J J, Gao Y M, Chremmos I D, Efremidis N K, Christodoulides D N, Chen Z G 2013 Opt. Lett. 38 498

    [23]

    Agrawal G P 2001 Nonlinear Fiber Optics (3rd Ed.) (San Diego: Academic Press) p51

    [24]

    Hu Y, Zhang P, Lou C B, Huang S, Xu J J, Chen Z G 2010 Opt. Lett. 35 2260

    [25]

    Beijersbergen M W, Allen L, van der Veen H E L O, Woerdman J P 1993 Opt. Commun. 96 123

    [26]

    Tidwell S C, Ford D H, Kimura W D 1990 Appl. Opt. 29 2234

    [27]

    Passilly N, de Saint Denis R, Aït-Ameur K, Treussart F, Hierle R, Roch J F 2005 J. Opt. Soc. Am. A 22 984

    [28]

    Xin J T, Gao C Q, Li C 2012 Sci. Sin. Phys. Mech. Astron. doi: 10.1360/132012-417 (in Chinese) [辛璟焘, 高春清, 李辰 2012中国科学: 物理学 力学 天文学 doi: 10.1360/132012-417]

  • [1] 喻欢欢, 张晨爽, 林丹樱, 于斌, 屈军乐. 基于高速相位型空间光调制器的双光子多焦点结构光显微技术. 物理学报, 2021, 70(9): 098701. doi: 10.7498/aps.70.20201797
    [2] 魏祥, 吴智政, 曹战, 王园园, DzikiMbemba. 基于磁液变形镜生成弯曲轨迹自加速类贝塞尔光束. 物理学报, 2019, 68(11): 114701. doi: 10.7498/aps.68.20190063
    [3] 汤明玉, 武梦婷, 臧瑞环, 荣腾达, 杜艳丽, 马凤英, 段智勇, 弓巧侠. 菲涅耳非相干数字全息大视场研究. 物理学报, 2019, 68(10): 104204. doi: 10.7498/aps.68.20182216
    [4] 齐淑霞, 刘圣, 李鹏, 韩磊, 程华超, 吴东京, 赵建林. 高效产生任意矢量光场的一种方法. 物理学报, 2019, 68(2): 024201. doi: 10.7498/aps.68.20181816
    [5] 白云鹤, 臧瑞环, 汪盼, 荣腾达, 马凤英, 杜艳丽, 段智勇, 弓巧侠. 基于空间光调制器的非相干数字全息单次曝光研究. 物理学报, 2018, 67(6): 064202. doi: 10.7498/aps.67.20172127
    [6] 闻远辉, 陈钰杰, 余思远. 基于焦散线方法的自加速光束设计. 物理学报, 2017, 66(14): 144210. doi: 10.7498/aps.66.144210
    [7] 解万财, 黄素娟, 邵蔚, 朱福全, 陈木生. 基于混合光模式阵列的自由空间编码通信. 物理学报, 2017, 66(14): 144102. doi: 10.7498/aps.66.144102
    [8] 赵浩宇, 邓洪昌, 苑立波. Airy光纤:基于阵列波导耦合的光场调控方法. 物理学报, 2017, 66(7): 074211. doi: 10.7498/aps.66.074211
    [9] 乐阳阳, 张兴宇, 杨波, 陆蓉儿, 洪煦昊, 张超, 秦亦强, 朱永元. 一种含时贝塞尔光束的理论性质研究. 物理学报, 2016, 65(14): 144201. doi: 10.7498/aps.65.144201
    [10] 席思星, 王晓雷, 黄帅, 常胜江, 林列. 基于光学全息的任意矢量光的生成方法. 物理学报, 2015, 64(12): 124202. doi: 10.7498/aps.64.124202
    [11] 黄素娟, 谷婷婷, 缪庄, 贺超, 王廷云. 多环涡旋光束的实验研究. 物理学报, 2014, 63(24): 244103. doi: 10.7498/aps.63.244103
    [12] 周巧巧, 徐淑武, 陆俊发, 周琦, 纪宪明, 印建平. 液晶空间光调制器产生可调三光学势阱. 物理学报, 2013, 62(15): 153701. doi: 10.7498/aps.62.153701
    [13] 乐阳阳, 肖寒, 王子潇, 吴敏. 关于Airy光束衍射及自加速性质的研究. 物理学报, 2013, 62(4): 044205. doi: 10.7498/aps.62.044205
    [14] 顾宋博, 徐淑武, 陆俊发, 纪宪明, 印建平. 用液晶空间光调制器产生光阱阵列. 物理学报, 2012, 61(15): 153701. doi: 10.7498/aps.61.153701
    [15] 徐淑武, 周巧巧, 顾宋博, 纪宪明, 印建平. 用空间光调制器产生三维光阱阵列 . 物理学报, 2012, 61(22): 223702. doi: 10.7498/aps.61.223702
    [16] 辛璟焘, 高春清, 李辰, 王铮. 螺旋光束经过振幅型衍射光学元件的传输特性及其拓扑电荷数的测量. 物理学报, 2012, 61(17): 174202. doi: 10.7498/aps.61.174202
    [17] 齐晓庆, 高春清. 螺旋相位光束轨道角动量态测量的实验研究. 物理学报, 2011, 60(1): 014208. doi: 10.7498/aps.60.014208
    [18] 吴逢铁, 江新光, 刘彬, 邱振兴. 轴棱锥产生无衍射光束自再现特性的几何光学分析. 物理学报, 2009, 58(5): 3125-3129. doi: 10.7498/aps.58.3125
    [19] 陆大全, 胡巍, 钱列加, 范滇元. 等衍射超短脉冲厄米高斯光束在自由空间中的传输及其时空耦合效应. 物理学报, 2009, 58(3): 1655-1661. doi: 10.7498/aps.58.1655
    [20] 葛爱明, 隋 展, 徐克璹. 反射型LCOS器件纯相位调制特性的研究. 物理学报, 2003, 52(10): 2481-2485. doi: 10.7498/aps.52.2481
计量
  • 文章访问数:  3525
  • PDF下载量:  646
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-09-04
  • 修回日期:  2013-10-06
  • 刊出日期:  2014-02-05

自加速类贝塞尔-厄米-高斯光束的理论和实验研究

  • 1. 北京理工大学光电学院, 北京 100081;
  • 2. 华南师范大学, 纳米光学材料和器件实验室, 广州 510631;
  • 3. 中国科学院光电研究院, 北京 100190
    基金项目: 国家重点基础研究发展计划(批准号:2013CB632703)、国家自然科学基金(批准号:11374108, 10904041)、广东省优秀博士学位论文作者专项基金(批准号:SYBZZXM201227)和国家留学基金资助的课题.

摘要: 空间相位调制一直是设计新型自加速光束的重要方法. 参照类贝塞尔光束产生的思路,从理论上提出了一种新型的自加速无衍射类贝塞尔-厄米-高斯光束,并从数值模拟和实验两个方面研究此光束沿不同轨道的演化. 理论上通过对厄米-高斯光束进行相位调制,产生了不同模式的自加速类贝塞尔-厄米-高斯光束. 采用分步傅里叶算法模拟了(0,1),(1,0),(1,1)和(1,2)阶类贝塞尔-厄米-高斯光束沿预设轨道的传输过程. 采用计算全息和空间光调制技术在实验中观察了类贝塞尔-厄米-高斯光束沿预设轨道的传输,例如抛物、双曲、双曲正割和三维轨道. 实验观察与理论结果符合得很好. 实验验证了不同阶类贝塞尔-厄米-高斯光束的奇特光斑结构,验证了光束的非衍射特性及传输轨道的可控性,且理论模拟验证了光束的自修复特性. 作为此前研究的类贝塞尔光束的一般形式,本文所得到的光束可用于构造出更加新型实用的光束.

English Abstract

参考文献 (28)

目录

    /

    返回文章
    返回