搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

温度改变对钛氧化物忆阻器导电特性的影响

徐晖 田晓波 步凯 李清江

引用本文:
Citation:

温度改变对钛氧化物忆阻器导电特性的影响

徐晖, 田晓波, 步凯, 李清江

Influence of temperature change on conductive characteristics of titanium oxide memristor

Xu Hui, Tian Xiao-Bo, Bu kai, Li Qing-Jiang
PDF
导出引用
  • 相同测试条件下,纳米钛氧化物忆阻器的导电过程存在不稳定性,制约了对器件瞬态阻抗的精确读取与控制,并影响了器件应用于电路设计的可靠性与稳定性. 杂质漂移与隧道势垒的共存是导致上述不稳定性的可能因素,且杂质漂移特性与环境温度密切相关. 然而,目前尚无通过控制温度提高忆阻器导电稳定性的具体研究. 基于杂质漂移与隧道势垒共存,本文分析了温度与忆阻器导电特性的关联,研究了器件活跃区域厚度及初始掺杂层厚度的改变对临界温度的影响,利用SPICE软件进行了仿真验证并给出结果,得出提高忆阻器导电稳定性的方法有:增大活跃区域厚度、降低初始杂质浓度及保持环境温度稳定且低于临界温度,从而为制备性能稳定的忆阻器及推动器件在实际电路中的应用提供依据.
    Nano-scaled titanium oxide memristors exhibit unstable conductive characteristics under the same test condition: restricting the possibility to have accurate reading and control of the transient resistance of the device. Moreover, the reliability and stability of memristor-based circuits cannot be guaranteed. Coexistence of dopant drift and tunnel barrier is one of possible origins which causes undesirable instability, and the ambient temperature has a close relationship with dopant drift. However, there have been no detailed researches which may improve the stability of memristors by controlling temperatures. Based on the coexistence of dopant drift and tunnel barrier, the connections between temperature and memristor conductive characteristics are analyzed, and the influences of changes of active area width and initially doped layer width on the critical temperature are studied. Simulations are performed in SPICE and the results are given in this paper. In conclusion, methods are proposed for enhancing the conductive stability of memristors, which include increasing the active area width, decreasing the initially doped layer width, keeping the temperature to be under the critical value, and stability. Our work may provide a basis for manufacturing memristors with stable performance and promoting the practical circuit in applications.
    • 基金项目: 国家自然科学基金(批准号:61171017,F010505)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61171017, F010505).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 59 148

    [4]

    Rumberg B, Graham D W 2012 IEEE Trans. Circuits Syst. II, Exp. Briefs 59 4

    [5]

    Berdan R, Prodromakis T, Toumazou C 2012 Electron. Lett. 48 18

    [6]

    Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California USA, July 23-25, p939

    [7]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese)[包伯成, 刘中, 许建平 2010 物理学报 59 3785]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [9]

    Xu B R 2013 Acta Phys. Sin. 62 190506 (in Chinese)[许碧容 2013 物理学报 62 190506]

    [10]

    Fang X D, Tang Y H, Wu J J, Zhu X, Zhou J, Huang D 2013 Chin. Phys. B 22 078901

    [11]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [12]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese)[李智炜, 刘海军, 徐欣 2013 物理学报 62 096401]

    [13]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [14]

    Yoon K J, Lee M H, Kim G H, Song S J, Seok J Y, Han S, Yoon J H, Kim K M, Hwang C S 2012 Nanotechnology 23 185202

    [15]

    Yang J J, Strachan J P, Miao F, Zhang M X, Pickett M D, Yi W, Ohlberg D A A, Ribeiro G M, Williams R S 2011 Appl. Phys. A 102 785

    [16]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [17]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [18]

    Mladenov M V, Kirilov S M 2013 International Symposium on Theoretical Electrical Engineering, Czech Republic, Jun 24-26, p6

    [19]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [20]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [21]

    Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems, Brazil, May 15-18, p1832

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Kim H, Sah M P, Yang C, Roska T, Chua L O 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 59 148

    [4]

    Rumberg B, Graham D W 2012 IEEE Trans. Circuits Syst. II, Exp. Briefs 59 4

    [5]

    Berdan R, Prodromakis T, Toumazou C 2012 Electron. Lett. 48 18

    [6]

    Raja T, Mourad S 2009 International Conference on Communications, Circuits and Systems, California USA, July 23-25, p939

    [7]

    Bao B C, Liu Z, Xu J P 2010 Acta Phys. Sin. 59 3785 (in Chinese)[包伯成, 刘中, 许建平 2010 物理学报 59 3785]

    [8]

    Bao B C, Liu Z, Xu J P 2010 Chin. Phys. B 19 030510

    [9]

    Xu B R 2013 Acta Phys. Sin. 62 190506 (in Chinese)[许碧容 2013 物理学报 62 190506]

    [10]

    Fang X D, Tang Y H, Wu J J, Zhu X, Zhou J, Huang D 2013 Chin. Phys. B 22 078901

    [11]

    Tian X B, Xu H 2013 Chin. Phys. B 22 088501

    [12]

    Li Z W, Liu H J, Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese)[李智炜, 刘海军, 徐欣 2013 物理学报 62 096401]

    [13]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [14]

    Yoon K J, Lee M H, Kim G H, Song S J, Seok J Y, Han S, Yoon J H, Kim K M, Hwang C S 2012 Nanotechnology 23 185202

    [15]

    Yang J J, Strachan J P, Miao F, Zhang M X, Pickett M D, Yi W, Ohlberg D A A, Ribeiro G M, Williams R S 2011 Appl. Phys. A 102 785

    [16]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [17]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [18]

    Mladenov M V, Kirilov S M 2013 International Symposium on Theoretical Electrical Engineering, Czech Republic, Jun 24-26, p6

    [19]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [20]

    Tian X B, Xu H, Li Q J 2014 Acta Phys. Sin. 63 048401 (in Chinese) [田晓波, 徐晖, 李清江 2014 物理学报 63 048401]

    [21]

    Abdalla H, Pickett M D 2011 International Symposium on Circuits and Systems, Brazil, May 15-18, p1832

  • [1] 胡炜, 廖建彬, 杜永乾. 一种适用于大规模忆阻网络的忆阻器单元解析建模策略. 物理学报, 2021, 70(17): 178505. doi: 10.7498/aps.70.20210116
    [2] 史晨阳, 闵光宗, 刘向阳. 蛋白质基忆阻器研究进展. 物理学报, 2020, 69(17): 178702. doi: 10.7498/aps.69.20200617
    [3] 马天兵, 訾保威, 郭永存, 凌六一, 黄友锐, 贾晓芬. 基于拟合衰减差自补偿的分布式光纤温度传感器. 物理学报, 2020, 69(3): 030701. doi: 10.7498/aps.69.20191456
    [4] 徐威, 王钰琪, 李岳峰, 高斐, 张缪城, 连晓娟, 万相, 肖建, 童祎. 新型忆阻器神经形态电路的设计及其在条件反射行为中的应用. 物理学报, 2019, 68(23): 238501. doi: 10.7498/aps.68.20191023
    [5] 邵楠, 张盛兵, 邵舒渊. 具有经验学习特性的忆阻器模型分析. 物理学报, 2019, 68(19): 198502. doi: 10.7498/aps.68.20190808
    [6] 邵楠, 张盛兵, 邵舒渊. 具有感觉记忆的忆阻器模型. 物理学报, 2019, 68(1): 018501. doi: 10.7498/aps.68.20181577
    [7] 吴洁宁, 王丽丹, 段书凯. 基于忆阻器的时滞混沌系统及伪随机序列发生器. 物理学报, 2017, 66(3): 030502. doi: 10.7498/aps.66.030502
    [8] 杨易, 徐贲, 刘亚铭, 李萍, 王东宁, 赵春柳. 基于游标效应的增敏型光纤法布里-珀罗干涉仪温度传感器. 物理学报, 2017, 66(9): 094205. doi: 10.7498/aps.66.094205
    [9] 阮静雅, 孙克辉, 牟俊. 基于忆阻器反馈的Lorenz超混沌系统及其电路实现. 物理学报, 2016, 65(19): 190502. doi: 10.7498/aps.65.190502
    [10] 俞亚娟, 王在华. 一个分数阶忆阻器模型及其简单串联电路的特性. 物理学报, 2015, 64(23): 238401. doi: 10.7498/aps.64.238401
    [11] 郭羽泉, 段书凯, 王丽丹. 纳米级尺寸参数对钛氧化物忆阻器的特性影响. 物理学报, 2015, 64(10): 108502. doi: 10.7498/aps.64.108502
    [12] 袁泽世, 李洪涛, 朱晓华. 基于忆阻器的数模混合随机数发生器. 物理学报, 2015, 64(24): 240503. doi: 10.7498/aps.64.240503
    [13] 孟凡一, 段书凯, 王丽丹, 胡小方, 董哲康. 一种改进的WOx忆阻器模型及其突触特性分析. 物理学报, 2015, 64(14): 148501. doi: 10.7498/aps.64.148501
    [14] 董哲康, 段书凯, 胡小方, 王丽丹. 两类纳米级非线性忆阻器模型及串并联研究. 物理学报, 2014, 63(12): 128502. doi: 10.7498/aps.63.128502
    [15] 刘玉东, 王连明. 基于忆阻器的spiking神经网络在图像边缘提取中的应用. 物理学报, 2014, 63(8): 080503. doi: 10.7498/aps.63.080503
    [16] 李志军, 曾以成, 李志斌. 改进型细胞神经网络实现的忆阻器混沌电路. 物理学报, 2014, 63(1): 010502. doi: 10.7498/aps.63.010502
    [17] 刘东青, 程海峰, 朱玄, 王楠楠, 张朝阳. 忆阻器及其阻变机理研究进展. 物理学报, 2014, 63(18): 187301. doi: 10.7498/aps.63.187301
    [18] 田晓波, 徐晖, 李清江. 横截面积参数对钛氧化物忆阻器导电特性的影响. 物理学报, 2014, 63(4): 048401. doi: 10.7498/aps.63.048401
    [19] 许碧荣. 一种最简的并行忆阻器混沌系统. 物理学报, 2013, 62(19): 190506. doi: 10.7498/aps.62.190506
    [20] 贾林楠, 黄安平, 郑晓虎, 肖志松, 王玫. 界面效应调制忆阻器研究进展. 物理学报, 2012, 61(21): 217306. doi: 10.7498/aps.61.217306
计量
  • 文章访问数:  3609
  • PDF下载量:  714
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-13
  • 修回日期:  2014-01-13
  • 刊出日期:  2014-05-05

温度改变对钛氧化物忆阻器导电特性的影响

  • 1. 国防科学与技术大学电子科学与工程学院, 长沙 410073
    基金项目: 国家自然科学基金(批准号:61171017,F010505)资助的课题.

摘要: 相同测试条件下,纳米钛氧化物忆阻器的导电过程存在不稳定性,制约了对器件瞬态阻抗的精确读取与控制,并影响了器件应用于电路设计的可靠性与稳定性. 杂质漂移与隧道势垒的共存是导致上述不稳定性的可能因素,且杂质漂移特性与环境温度密切相关. 然而,目前尚无通过控制温度提高忆阻器导电稳定性的具体研究. 基于杂质漂移与隧道势垒共存,本文分析了温度与忆阻器导电特性的关联,研究了器件活跃区域厚度及初始掺杂层厚度的改变对临界温度的影响,利用SPICE软件进行了仿真验证并给出结果,得出提高忆阻器导电稳定性的方法有:增大活跃区域厚度、降低初始杂质浓度及保持环境温度稳定且低于临界温度,从而为制备性能稳定的忆阻器及推动器件在实际电路中的应用提供依据.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回