搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究

王玮 尹新国

引用本文:
Citation:

铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究

王玮, 尹新国

First-principles study on phonon properties of iron-based fluoride superconductors SrFe1-xCoxAsF (x=0, 0.125)

Wang Wei, Yin Xin-Guo
PDF
导出引用
  • 采用基于第一性原理的平面波赝势方法,计算了铁基氟化物及其钴掺杂超导体SrFe1-xCoxAsF(x=0,0.125)在四方非磁态与正交条纹反铁磁态下的声子谱(声子色散曲线、声子态密度)及电-声子耦合常数. 计算发现:条纹反铁磁相互作用下的自旋-声子耦合效应强于电-声子耦合作用使声子谱的宽度减小;自旋效应使声子的有效质量增加导致条纹反铁磁态下Fe原子与As原子的耦合振动频率减小. 另外,掺杂和自旋效应是提高电-声子耦合常数的两个有效方法,但计算所得超导转变温度远小于实验测量值,表明铁基超导电性非简单的电-声子耦合配对机理.
    Using plane-wave pseudopotential method based on first-principles, we calculate the phonon spectra (including phonon dispersion curves and phonon density of states) and electron-phonon coupling constants of SrFe1-xCoxAsF (x=0, 0.125) in tetragonal nonmagnetic (NM) and orthorhombic striped antiferromagnetic (SAF) states. Results show that under striped antiferromagetic interaction the spin-phonon coupling is stronger than the electron-phonon coupling, leading to the decrease of phonon spectra width; and the increased effective phonon quality due to spin effects makes the frequencies of coupling vibration between Fe and As atoms reduced. In addition, doping and spin effects are two effective methods to enhance the electron-phonon coupling, however, the calculated superconducting transition temperature is far lower than the experimental measurement, which rules out the simple electron-coupling superconducting pairing mechanism in SrFe1-xCoxAsF.
    • 基金项目: 国家自然科学基金青年基金(批准号:11104100)和安徽省高等学校质量工程项目(批准号:2011248)资助的课题.
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11104100), and the Quality Project of Higher Education of Anhui Province, China (Grant No. 2011248).
    [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296-3297

    [2]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [4]

    Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 EPL 82 57002

    [5]

    Matano K, Ren Z A, Dong X L, Sun L L, Zhao Z X, Zheng G Q 2008 EPL 83 57001

    [6]

    Wang C, Li L J, Chi S, Zhu Z W, Ren Z, Li Y K, Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H, Xu Z A 2008 EPL 83 67006

    [7]

    Sefat A S, Huq A, McGruire M A, Jin R Y, Sales B C, Mandrus D, Cranswick L M D, Stephens P W, Stone K H 2008 Phys. Rev. B 78 104505

    [8]

    Wang C, Li Y K, Zhu Z W, Jiang S, Lin X, Luo Y K, Chi S, Li L J, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2009 Phys. Rev. B 79 054521

    [9]

    Cao G H, Jiang S, Lin X, Wang C, Li Y K, Ren Z, Tao Q, Feng C, Dai J H, Xu Z A, Zhang F C 2009 Phys. Rev. B 79 174505

    [10]

    Xiao Y, Su Y, Mittal R, Chatterji T, Hansen T, Kumar C M N, Matsuishi S, Hosono H, Brueckel Th 2009 Phys. Rev. B 79 060504

    [11]

    Cava R J 2000 J. Am. Ceram. Soc. 83 5

    [12]

    Kandyel E, Sekkina M A 2002 J. Phys. Chem. Solids 63 1815

    [13]

    Matsurshi S, Inoue Y, Numura T, Hirano M, Hosono H 2009 J. Phys. Soc. Jpn. 77 113709

    [14]

    Han F, Zhu X Y, Mu G, Cheng P, Wen H H 2008 Phys. Rev. B 78 180503

    [15]

    Tegel M, Johansson S, Weiss V, Tegel M, Johansson S, Weiss V, Schellenberg I, Hermes W, Pöttegn R, Johrendt D 2008 EPL 84 67007

    [16]

    Wang W, Li B, Liu S, Liu M, Xing Z W 2010 J. Appl. Phys. 107 123906

    [17]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 096301

    [18]

    Zhang A M, Zhang Q M 2013 Chin. Phys. B 22 087103

    [19]

    Dai Y M, Xu B, Shen B, Xiao H, Lobo R. M P S, Qiu X G 2012 Chin. Phys. B 21 077403

    [20]

    Sun J F, Wang W 2012 Acta Phys. Sin. 61 137402 (in Chinese) [孙家法, 王玮 2012 物理学报 61 137402]

    [21]

    Satoru M, Yasunori I, Takatoshi N, Youichi K, Masahiro H, Hideo H 2009 New Journal of Physics 11 025012

    [22]

    Xia T L, Zhao T S 2011 Supercond. Sci. Technol. 24 095006

    [23]

    Zbiri M, Mittal R, Rols S, Su Y, Xiao Y, Schober H, Chaplot S L, Johnson M R, Chatterji T, Inoue Y, Matsuishi S, Hosono H, Brueckel T 2010 J. Phys. : Condens. Matter 22 315701

    [24]

    Egami T, Fine B V, Parshall D, Subedi A, Singh D J 2010 Adv. Condens. Matter Phys. 2010 164916

    [25]

    Wang W, Sun J F, Li S W 2011 Appl. Phys. Lett. 99 082504

    [26]

    Wang W, Sun J F, Li S W, Lu H Y 2012 Physica C 472 29-33

    [27]

    Liu S, Li B, Wang W, Wang J, Liu M 2010 Acta Phys. Sin. 59 4245 (in Chinese) [刘甦, 李斌, 王玮, 汪军, 刘楣 2010 物理学报 59 4245]

    [28]

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese) [李斌, 邢钟文, 刘楣 2011 物理学报 60 077402]

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

  • [1]

    Kamihara Y, Watanabe T, Hirano M, Hosono H 2008 J. Am. Chem. Soc. 130 3296-3297

    [2]

    Chen G F, Li Z, Wu D, Li G, Hu W Z, Dong J, Zheng P, Luo J L, Wang N L 2008 Phys. Rev. Lett. 100 247002

    [3]

    Chen X H, Wu T, Wu G, Liu R H, Chen H, Fang D F 2008 Nature 453 761

    [4]

    Ren Z A, Yang J, Lu W, Yi W, Shen X L, Li Z C, Che G C, Dong X L, Sun L L, Zhou F, Zhao Z X 2008 EPL 82 57002

    [5]

    Matano K, Ren Z A, Dong X L, Sun L L, Zhao Z X, Zheng G Q 2008 EPL 83 57001

    [6]

    Wang C, Li L J, Chi S, Zhu Z W, Ren Z, Li Y K, Wang Y T, Lin X, Luo Y K, Jiang S, Xu X F, Cao G H, Xu Z A 2008 EPL 83 67006

    [7]

    Sefat A S, Huq A, McGruire M A, Jin R Y, Sales B C, Mandrus D, Cranswick L M D, Stephens P W, Stone K H 2008 Phys. Rev. B 78 104505

    [8]

    Wang C, Li Y K, Zhu Z W, Jiang S, Lin X, Luo Y K, Chi S, Li L J, Ren Z, He M, Chen H, Wang Y T, Tao Q, Cao G H, Xu Z A 2009 Phys. Rev. B 79 054521

    [9]

    Cao G H, Jiang S, Lin X, Wang C, Li Y K, Ren Z, Tao Q, Feng C, Dai J H, Xu Z A, Zhang F C 2009 Phys. Rev. B 79 174505

    [10]

    Xiao Y, Su Y, Mittal R, Chatterji T, Hansen T, Kumar C M N, Matsuishi S, Hosono H, Brueckel Th 2009 Phys. Rev. B 79 060504

    [11]

    Cava R J 2000 J. Am. Ceram. Soc. 83 5

    [12]

    Kandyel E, Sekkina M A 2002 J. Phys. Chem. Solids 63 1815

    [13]

    Matsurshi S, Inoue Y, Numura T, Hirano M, Hosono H 2009 J. Phys. Soc. Jpn. 77 113709

    [14]

    Han F, Zhu X Y, Mu G, Cheng P, Wen H H 2008 Phys. Rev. B 78 180503

    [15]

    Tegel M, Johansson S, Weiss V, Tegel M, Johansson S, Weiss V, Schellenberg I, Hermes W, Pöttegn R, Johrendt D 2008 EPL 84 67007

    [16]

    Wang W, Li B, Liu S, Liu M, Xing Z W 2010 J. Appl. Phys. 107 123906

    [17]

    Zhang X J, Chen C L, Feng F L 2013 Chin. Phys. B 22 096301

    [18]

    Zhang A M, Zhang Q M 2013 Chin. Phys. B 22 087103

    [19]

    Dai Y M, Xu B, Shen B, Xiao H, Lobo R. M P S, Qiu X G 2012 Chin. Phys. B 21 077403

    [20]

    Sun J F, Wang W 2012 Acta Phys. Sin. 61 137402 (in Chinese) [孙家法, 王玮 2012 物理学报 61 137402]

    [21]

    Satoru M, Yasunori I, Takatoshi N, Youichi K, Masahiro H, Hideo H 2009 New Journal of Physics 11 025012

    [22]

    Xia T L, Zhao T S 2011 Supercond. Sci. Technol. 24 095006

    [23]

    Zbiri M, Mittal R, Rols S, Su Y, Xiao Y, Schober H, Chaplot S L, Johnson M R, Chatterji T, Inoue Y, Matsuishi S, Hosono H, Brueckel T 2010 J. Phys. : Condens. Matter 22 315701

    [24]

    Egami T, Fine B V, Parshall D, Subedi A, Singh D J 2010 Adv. Condens. Matter Phys. 2010 164916

    [25]

    Wang W, Sun J F, Li S W 2011 Appl. Phys. Lett. 99 082504

    [26]

    Wang W, Sun J F, Li S W, Lu H Y 2012 Physica C 472 29-33

    [27]

    Liu S, Li B, Wang W, Wang J, Liu M 2010 Acta Phys. Sin. 59 4245 (in Chinese) [刘甦, 李斌, 王玮, 汪军, 刘楣 2010 物理学报 59 4245]

    [28]

    Li B, Xing Z W, Liu M 2011 Acta Phys. Sin. 60 077402 (in Chinese) [李斌, 邢钟文, 刘楣 2011 物理学报 60 077402]

    [29]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

计量
  • 文章访问数:  3074
  • PDF下载量:  392
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-28
  • 修回日期:  2014-01-29
  • 刊出日期:  2014-05-05

铁基氟化物超导体SrFe1-xCoxAsF(x=0, 0.125)声子特性的第一性原理计算研究

  • 1. 淮北师范大学, 物理与电子信息学院, 淮北 235000
    基金项目: 国家自然科学基金青年基金(批准号:11104100)和安徽省高等学校质量工程项目(批准号:2011248)资助的课题.

摘要: 采用基于第一性原理的平面波赝势方法,计算了铁基氟化物及其钴掺杂超导体SrFe1-xCoxAsF(x=0,0.125)在四方非磁态与正交条纹反铁磁态下的声子谱(声子色散曲线、声子态密度)及电-声子耦合常数. 计算发现:条纹反铁磁相互作用下的自旋-声子耦合效应强于电-声子耦合作用使声子谱的宽度减小;自旋效应使声子的有效质量增加导致条纹反铁磁态下Fe原子与As原子的耦合振动频率减小. 另外,掺杂和自旋效应是提高电-声子耦合常数的两个有效方法,但计算所得超导转变温度远小于实验测量值,表明铁基超导电性非简单的电-声子耦合配对机理.

English Abstract

参考文献 (29)

目录

    /

    返回文章
    返回