搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Si掺杂HfO2薄膜的铁电和反铁电性质

周大雨 徐进

引用本文:
Citation:

Si掺杂HfO2薄膜的铁电和反铁电性质

周大雨, 徐进

Ferroelectric and antiferroelectric properties of Si-doped HfO2 thin films

Zhou Da-Yu, Xu Jin
PDF
导出引用
  • 通过改变Si 掺杂量制备出了具有显著铁电和反铁电特征的HfO2 纳米薄膜,对其电滞回线、电容-电压和漏电流-电压特性以及物相温度稳定性进行了对比研究. 反铁电薄膜的介电系数大于铁电薄膜,在电场加载和减载过程中发生的可逆反铁电-铁电相变导致了双电滞回线的出现,在室温至185℃的测试温度范围内未出现反铁电顺电相变. 在电流-电压特性测量时观察到的负微分电阻效应归因于极化弛豫等慢响应机理的贡献.
    Ferroelectric and antiferroelectric HfO2 nano-films were prepared by changing silicon doping concentration, and their basic properties conpared in terms of polarization hysteresis, capacitance-voltage and leakage-voltage behavior, as well as the effect of temperature on phase stability. Antiferroelectric thin film exhibits a higher dielectric constant than the ferroelectric film, and is characterized by the double polarization hysteresis loops due to reversible antiferroelectric-ferroelectric phase transition induced during loading and unloading processes of electric field. No antiferroelectric-paraelectric phase transition is observed at measuring temperatures up to 185 ℃. The negative differential resistivity effect observed in leakage measurements is attributed to the contributions from slow response mechanisms like polarization relaxation.
    • 基金项目: 国家自然科学基金(批准号:51272034)和电子薄膜与集成器件国家重点实验室开放基金(批准号:KFJJ201101)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51272034), and the Open Research Fund of State Key Laboratory of Electronic Thin Films and Integrated Devices (UESTC) of China (Grant No. KFJJ201101).
    [1]

    Wilk G D, Wallace R M, Anthony J M 2001 J. Appl. Phys. 89 5243

    [2]

    Choi J H, Mao Y, Chang J P 2011 Mater. Sci. Eng. R. 72 97

    [3]
    [4]
    [5]

    Bauer A J, Lemberger M, Erlbacher T, Weinreich W 2008 Materials Science Forum 573-574 165

    [6]
    [7]

    Bscke T S, Mller J, Bruhaus D, Schrder U, Bttger U 2011 Appl. Phys. Lett. 99 102903

    [8]
    [9]

    Zhou D Y, Mller J, Xu J, Knebel S, Bruhaus D, Schrder U 2012 Appl. Phys. Lett. 100 082905

    [10]
    [11]

    Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, Bentum R, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69

    [12]
    [13]

    Mller J, Bscke T S, Schrder U, Mueller S, Bruhaus D, Bttger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318

    [14]
    [15]

    Fujisaki Y 2013 Jpn. J. Appl. Phys. 52 040001

    [16]
    [17]

    Mller J, Bscke T S, Schrder U, Hoffmann R, Mikolajick T, Frey L 2012 IEEE Electron Device Lett. 33 185

    [18]
    [19]

    Bscke T S, Teichert S, Bruhaus D, Mller J, Schrder U, Bttger U, Mikolajick T 2011 Appl. Phys. Lett. 99 112904

    [20]
    [21]

    Kim K, Lee S 2006 J. Appl. Phys. 100 051604

    [22]
    [23]

    Kato Y, Kaneko Y, Tanaka H, Kaibara K, Koyama S, Isogai K, Yamada T, Shimada Y 2007 Jpn. J. Appl. Phys. 46 2157

    [24]

    Zhou D Y, Xu J, Li Q, Guan Y, Cao F, Dong X L, Mller J, Schenk T, Schrder U 2013 Appl. Phys. Lett. 103 192904

    [25]
    [26]

    Yang T Q, Yao X, Zhang L Y 2000 J. Inorg. Mater. 15 807 (in Chinese)[杨同青, 姚熹, 张良莹 2000 无机材料学报 15 807]

    [27]
    [28]

    Zhao X, Vanderbilt D 2002 Phys. Rev. B 65 233106

    [29]
    [30]
    [31]

    Maity A K, Lee J Y, Sen A, Maiti H S 2004 Jpn. J. Appl. Phys. 43 7155

    [32]
    [33]

    Watanabe K, Hartmann A J, Lamb R N, Scott J F 1998 J. Appl. Phys. 84 2170

    [34]

    Scott J F, Melnick B M, Cuchiaro J D, Zuleeg R, Araujo C A, McMillan L D, Scott M C 1994 Integr. Ferroelectr. 4 85

    [35]
    [36]
    [37]

    Dawber M, Scott J F 2004 J. Phys. : Condens. Matter 16 L515

    [38]

    Waser R, Klee M 1992 Integr. Ferroelectr. 2 23

    [39]
  • [1]

    Wilk G D, Wallace R M, Anthony J M 2001 J. Appl. Phys. 89 5243

    [2]

    Choi J H, Mao Y, Chang J P 2011 Mater. Sci. Eng. R. 72 97

    [3]
    [4]
    [5]

    Bauer A J, Lemberger M, Erlbacher T, Weinreich W 2008 Materials Science Forum 573-574 165

    [6]
    [7]

    Bscke T S, Mller J, Bruhaus D, Schrder U, Bttger U 2011 Appl. Phys. Lett. 99 102903

    [8]
    [9]

    Zhou D Y, Mller J, Xu J, Knebel S, Bruhaus D, Schrder U 2012 Appl. Phys. Lett. 100 082905

    [10]
    [11]

    Schroeder U, Mueller S, Mueller J, Yurchuk E, Martin D, Adelmann C, Schloesser T, Bentum R, Mikolajick T 2013 ECS J. Solid State Sci. Technol. 2 N69

    [12]
    [13]

    Mller J, Bscke T S, Schrder U, Mueller S, Bruhaus D, Bttger U, Frey L, Mikolajick T 2012 Nano Lett. 12 4318

    [14]
    [15]

    Fujisaki Y 2013 Jpn. J. Appl. Phys. 52 040001

    [16]
    [17]

    Mller J, Bscke T S, Schrder U, Hoffmann R, Mikolajick T, Frey L 2012 IEEE Electron Device Lett. 33 185

    [18]
    [19]

    Bscke T S, Teichert S, Bruhaus D, Mller J, Schrder U, Bttger U, Mikolajick T 2011 Appl. Phys. Lett. 99 112904

    [20]
    [21]

    Kim K, Lee S 2006 J. Appl. Phys. 100 051604

    [22]
    [23]

    Kato Y, Kaneko Y, Tanaka H, Kaibara K, Koyama S, Isogai K, Yamada T, Shimada Y 2007 Jpn. J. Appl. Phys. 46 2157

    [24]

    Zhou D Y, Xu J, Li Q, Guan Y, Cao F, Dong X L, Mller J, Schenk T, Schrder U 2013 Appl. Phys. Lett. 103 192904

    [25]
    [26]

    Yang T Q, Yao X, Zhang L Y 2000 J. Inorg. Mater. 15 807 (in Chinese)[杨同青, 姚熹, 张良莹 2000 无机材料学报 15 807]

    [27]
    [28]

    Zhao X, Vanderbilt D 2002 Phys. Rev. B 65 233106

    [29]
    [30]
    [31]

    Maity A K, Lee J Y, Sen A, Maiti H S 2004 Jpn. J. Appl. Phys. 43 7155

    [32]
    [33]

    Watanabe K, Hartmann A J, Lamb R N, Scott J F 1998 J. Appl. Phys. 84 2170

    [34]

    Scott J F, Melnick B M, Cuchiaro J D, Zuleeg R, Araujo C A, McMillan L D, Scott M C 1994 Integr. Ferroelectr. 4 85

    [35]
    [36]
    [37]

    Dawber M, Scott J F 2004 J. Phys. : Condens. Matter 16 L515

    [38]

    Waser R, Klee M 1992 Integr. Ferroelectr. 2 23

    [39]
  • [1] 王伟, 揭泉林. 基于机器学习J1-J2反铁磁海森伯自旋链相变点的识别方法. 物理学报, 2021, 70(23): 230701. doi: 10.7498/aps.70.20210711
    [2] 鲁圣国, 李丹丹, 林雄威, 简晓东, 赵小波, 姚英邦, 陶涛, 梁波. 铁电材料中电场对唯象系数和电卡强度的影响. 物理学报, 2020, 69(12): 127701. doi: 10.7498/aps.69.20200296
    [3] 杨自欣, 高章然, 孙晓帆, 蔡宏灵, 张凤鸣, 吴小山. 铅基钙钛矿铁电晶体高临界转变温度的机器学习研究. 物理学报, 2019, 68(21): 210502. doi: 10.7498/aps.68.20190942
    [4] 蒋招绣, 王永刚, 聂恒昌, 刘雨生. 极化状态与方向对单轴压缩下Pb(Zr0.95Ti0.05)O3铁电陶瓷畴变与相变行为的影响. 物理学报, 2017, 66(2): 024601. doi: 10.7498/aps.66.024601
    [5] 李俊, 吴强, 于继东, 谭叶, 姚松林, 薛桃, 金柯. 铁冲击相变的晶向效应. 物理学报, 2017, 66(14): 146201. doi: 10.7498/aps.66.146201
    [6] 王歆钰, 储瑞江, 魏胜男, 董正超, 仲崇贵, 曹海霞. 应力作用下EuTiO3铁电薄膜电热效应的唯象理论研究. 物理学报, 2015, 64(11): 117701. doi: 10.7498/aps.64.117701
    [7] 蒋招绣, 辛铭之, 申海艇, 王永刚, 聂恒昌, 刘雨生. 多孔未极化Pb(Zr0.95Ti0.05)O3铁电陶瓷单轴压缩力学响应与相变. 物理学报, 2015, 64(13): 134601. doi: 10.7498/aps.64.134601
    [8] 王琴, 王逸伦, 王浩, 孙慧, 毛翔宇, 陈小兵. Pr含量对Bi5Fe0.5Co0.5Ti3O15室温多铁性的影响. 物理学报, 2014, 63(14): 147701. doi: 10.7498/aps.63.147701
    [9] 刘志强, 常胜江, 王晓雷, 范飞, 李伟. 基于VO2薄膜相变原理的温控太赫兹超材料调制器. 物理学报, 2013, 62(13): 130702. doi: 10.7498/aps.62.130702
    [10] 王伟, 唐佳伟, 王乐天, 陈小兵. 脉冲激光沉积法制备高温压电薄膜0.20 BiInO3-0.80PbTiO3(已撤稿). 物理学报, 2013, 62(23): 237701. doi: 10.7498/aps.62.237701
    [11] 蒋冬冬, 谷岩, 冯玉军, 杜金梅. 静水压下锆锡钛酸铅铁电陶瓷相变和介电性能研究. 物理学报, 2011, 60(10): 107703. doi: 10.7498/aps.60.107703
    [12] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [13] 吕业刚, 梁晓琳, 龚跃球, 郑学军, 刘志壮. 外加电场对铁电薄膜相变的影响. 物理学报, 2010, 59(11): 8167-8171. doi: 10.7498/aps.59.8167
    [14] 岑忞, 章岳光, 陈卫兰, 顾培夫. 沉积速率和氧分压对HfO2薄膜残余应力的影响. 物理学报, 2009, 58(10): 7025-7029. doi: 10.7498/aps.58.7025
    [15] 卢志鹏, 祝文军, 刘绍军, 卢铁城, 陈向荣. 非静水压条件下铁从α到ε结构相变的第一性原理计算. 物理学报, 2009, 58(3): 2083-2089. doi: 10.7498/aps.58.2083
    [16] 仲崇贵, 蒋青, 方靖淮, 葛存旺. 单相ABO3型多铁材料的磁电耦合及磁电性质研究. 物理学报, 2009, 58(5): 3491-3496. doi: 10.7498/aps.58.3491
    [17] 许军, 黄宇健, 丁士进, 张卫. Ta和TaN底电极对原子层淀积HfO2介质MIM电性能的影响. 物理学报, 2009, 58(5): 3433-3436. doi: 10.7498/aps.58.3433
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [19] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
    [20] 刘 鹏, 杨同青, 张良莹, 姚 熹. Pb(Zr,Sn,Ti)O3反铁电陶瓷的低温相变扩散与极化弛豫. 物理学报, 2000, 49(11): 2300-2303. doi: 10.7498/aps.49.2300
计量
  • 文章访问数:  3706
  • PDF下载量:  876
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-12-28
  • 修回日期:  2014-02-27
  • 刊出日期:  2014-06-05

Si掺杂HfO2薄膜的铁电和反铁电性质

  • 1. 大连理工大学材料科学与工程学院, 大连 116024;
  • 2. 大连东软信息学院电子工程系, 大连 116023
    基金项目: 国家自然科学基金(批准号:51272034)和电子薄膜与集成器件国家重点实验室开放基金(批准号:KFJJ201101)资助的课题.

摘要: 通过改变Si 掺杂量制备出了具有显著铁电和反铁电特征的HfO2 纳米薄膜,对其电滞回线、电容-电压和漏电流-电压特性以及物相温度稳定性进行了对比研究. 反铁电薄膜的介电系数大于铁电薄膜,在电场加载和减载过程中发生的可逆反铁电-铁电相变导致了双电滞回线的出现,在室温至185℃的测试温度范围内未出现反铁电顺电相变. 在电流-电压特性测量时观察到的负微分电阻效应归因于极化弛豫等慢响应机理的贡献.

English Abstract

参考文献 (39)

目录

    /

    返回文章
    返回