搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究

陈薪羽 董渊 管佳音 李述涛 于永吉 吕彦飞

引用本文:
Citation:

湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究

陈薪羽, 董渊, 管佳音, 李述涛, 于永吉, 吕彦飞

Effects of turbulent medium refractive index structure constant Cn2 on the propagation characteristics of double-half hollow Gaussian beams

Chen Xin-Yu, Dong Yuan, Guan Jia-Yin, Li Shu-Tao, Yu Yong-Ji, Lü Yan-Fei
PDF
导出引用
  • 基于瑞利-索末菲衍射积分理论,利用交叉谱密度函数推导出双半高斯空心光束在湍流大气中传输时的解析表达式,并主要研究了湍流介质折射率结构常数Cn2对空心光束传输特性的影响,得到了双半高斯空心光束在不同条件下传输时的光强分布. 研究表明,Cn2的增大加剧了近场中传输的空心光束的衍射效应,这不仅缩短了空心光束完全演变成为高斯光束时所需的传输距离,而且还增加了此后高斯光束向外扩展的程度.
    Based on the Rayleigh-Sommerfeld diffraction integral theory, the propagation analytical expression of double-half Gaussian hollow beams in turbulent atmosphere is derived by using the cross spectral density function, and the effects of turbulent medium refractive index structure constant Cn2 on the propagation characteristics of double half a hollow Gaussian beams are studied and the intensity distributions under the different conditions are obtained as well. The research results show that the increased Cn2 can exacerbate the near-field diffraction effects of double-half Gaussian hollow beams, which not only shortens the propagation distance of hollow beams fully evolved into the Gaussian beams, but also increases the extent of the Gaussian beam extend outward.
    • 基金项目: 国家自然科学基金(批准号:61108029)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61108029).
    [1]

    Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y, Sasada H 1997 Phys. Rev. Lett. 78 4713

    [2]

    Ovchinnikov Y B, Manek I, Grimm R 1997 Phys. Rev. Lett. 79 2225

    [3]

    Song Y, Milam D, Hill W T 1999 Opt. Lett. 24 1805

    [4]

    Cai Y, Lu X, Lin Q 2003 Opt. Lett. 28 1084

    [5]

    Schweiger G, Nett R, Özel B, Weigel T 2010 Opt. Express 18 4510

    [6]

    Kotlyar V V, Kovalev A A, Skidanov R V, Khonina S N, Turunen J 2008 Appl. Opt. 47 6124

    [7]

    Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E 2007 Opt. Lett. 32 3053

    [8]

    Tovar A A, Casperson L W 1998 J. Opt. Soc. Am. A 15 2425

    [9]

    Topuzoski S, Janicijevic L 2009 Opt. Commun. 282 3426

    [10]

    Phelan C F, O'Dwyer D P, Rakovich Y P, Donegan J F, Lunney J G 2009 Opt. Express 17 12891

    [11]

    Litvin I A, Khilo N A, Forbes A, Belyi V N 2010 Opt. Express 18 4701

    [12]

    Carbajal-Dominguez A, Bernal J, Martin-Ruiz A, Niconoff G M 2010 Opt. Express 18 8400

    [13]

    Jiang Y S, Wang S H, Ou J, Tang H 2013 Acta Phys. Sin. 62 214201 (in Chinese) [江月松, 王帅会, 欧军, 唐华 2013 物理学报 62 214201]

    [14]

    Cai Y J, He S L 2006 Opt. Express 14 1353

    [15]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [16]

    Mei Z R, Zhao D M 2005 J. Opt. Soc. Am. A 22 1898

    [17]

    Zhou G Q, Cai Y J, Dai C Q 2013 Sci. China: Phys. Mech. Astron. 56 896

    [18]

    Li F, Tang H, Jiang Y S, Ou J 2011 Acta Phys. Sin. 60 014204 (in Chinese) [黎芳, 唐华, 江月松, 欧军 2011 物理学报 60 014204]

    [19]

    Dong Y, Zhang X H, Lu Y F 2009 Sci. China: Phys. Mech. Astron. 52 832

    [20]

    Wen J J, Breazeale M M 1988 J. Acoust. Soc. Am. 83 1752

    [21]

    Chen Y, Cai Y J, Eyyuboglu H T, Baykal Y 2008 Appl. Phys. B 90 87

  • [1]

    Kuga T, Torii Y, Shiokawa N, Hirano T, Shimizu Y, Sasada H 1997 Phys. Rev. Lett. 78 4713

    [2]

    Ovchinnikov Y B, Manek I, Grimm R 1997 Phys. Rev. Lett. 79 2225

    [3]

    Song Y, Milam D, Hill W T 1999 Opt. Lett. 24 1805

    [4]

    Cai Y, Lu X, Lin Q 2003 Opt. Lett. 28 1084

    [5]

    Schweiger G, Nett R, Özel B, Weigel T 2010 Opt. Express 18 4510

    [6]

    Kotlyar V V, Kovalev A A, Skidanov R V, Khonina S N, Turunen J 2008 Appl. Opt. 47 6124

    [7]

    Karimi E, Zito G, Piccirillo B, Marrucci L, Santamato E 2007 Opt. Lett. 32 3053

    [8]

    Tovar A A, Casperson L W 1998 J. Opt. Soc. Am. A 15 2425

    [9]

    Topuzoski S, Janicijevic L 2009 Opt. Commun. 282 3426

    [10]

    Phelan C F, O'Dwyer D P, Rakovich Y P, Donegan J F, Lunney J G 2009 Opt. Express 17 12891

    [11]

    Litvin I A, Khilo N A, Forbes A, Belyi V N 2010 Opt. Express 18 4701

    [12]

    Carbajal-Dominguez A, Bernal J, Martin-Ruiz A, Niconoff G M 2010 Opt. Express 18 8400

    [13]

    Jiang Y S, Wang S H, Ou J, Tang H 2013 Acta Phys. Sin. 62 214201 (in Chinese) [江月松, 王帅会, 欧军, 唐华 2013 物理学报 62 214201]

    [14]

    Cai Y J, He S L 2006 Opt. Express 14 1353

    [15]

    Wang T, Pu J X 2007 Acta Phys. Sin. 56 6754 (in Chinese) [王涛, 蒲继雄 2007 物理学报 56 6754]

    [16]

    Mei Z R, Zhao D M 2005 J. Opt. Soc. Am. A 22 1898

    [17]

    Zhou G Q, Cai Y J, Dai C Q 2013 Sci. China: Phys. Mech. Astron. 56 896

    [18]

    Li F, Tang H, Jiang Y S, Ou J 2011 Acta Phys. Sin. 60 014204 (in Chinese) [黎芳, 唐华, 江月松, 欧军 2011 物理学报 60 014204]

    [19]

    Dong Y, Zhang X H, Lu Y F 2009 Sci. China: Phys. Mech. Astron. 52 832

    [20]

    Wen J J, Breazeale M M 1988 J. Acoust. Soc. Am. 83 1752

    [21]

    Chen Y, Cai Y J, Eyyuboglu H T, Baykal Y 2008 Appl. Phys. B 90 87

计量
  • 文章访问数:  3348
  • PDF下载量:  326
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-02-22
  • 修回日期:  2014-03-30
  • 刊出日期:  2014-08-05

湍流介质折射率结构常数Cn2对双半高斯空心光束传输特性影响的研究

  • 1. 长春理工大学, 吉林省固体激光技术与应用重点实验室, 长春 130022
    基金项目: 国家自然科学基金(批准号:61108029)资助的课题.

摘要: 基于瑞利-索末菲衍射积分理论,利用交叉谱密度函数推导出双半高斯空心光束在湍流大气中传输时的解析表达式,并主要研究了湍流介质折射率结构常数Cn2对空心光束传输特性的影响,得到了双半高斯空心光束在不同条件下传输时的光强分布. 研究表明,Cn2的增大加剧了近场中传输的空心光束的衍射效应,这不仅缩短了空心光束完全演变成为高斯光束时所需的传输距离,而且还增加了此后高斯光束向外扩展的程度.

English Abstract

参考文献 (21)

目录

    /

    返回文章
    返回