搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究

张晋新 贺朝会 郭红霞 唐杜 熊涔 李培 王信

引用本文:
Citation:

不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究

张晋新, 贺朝会, 郭红霞, 唐杜, 熊涔, 李培, 王信

Three-dimensional simulation study of bias effect on single event effects of SiGe heterojunction bipolar transistor

Zhang Jin-Xin, He Chao-Hui, Guo Hong-Xia, Tang Du, Xiong Cen, Li Pei, Wang Xin
PDF
导出引用
  • 针对国产锗硅异质结双极晶体管(SiGe HBT), 采用半导体器件三维计算机模拟工具, 建立单粒子效应三维损伤模型, 研究不同偏置状态对SiGe HBT单粒子效应的影响. 分析比较不同偏置下重离子入射器件后, 各端口电流瞬变峰值和电荷收集量随时间的变化关系, 获得SiGe HBT单粒子效应与偏置的响应关系. 结果表明: 不同端口对单粒子效应响应的最劣偏置不同, 同一端口电荷收集量和瞬变电流峰值的最劣偏置也有所差异. 载流子输运方式变化和外加电场影响是造成这种现象的主要原因.
    In this paper we establish a three-dimensional (3D) numerical simulation model of domestic SiGe heterojunction bipolar transistor (SiGe HBT) by using technology computer aided design tools, to study the bias effect on single event effect (SEE) of SiGe HBT. The response relationship between SEE and the bias of SiGe HBT is identified based on the analyses of transient current peak and charge collection of each terminal. The results show that the worst biases for SEE are different for different terminals. Even for the same terminal, the worst biases for charge collection and transient current peak are different. This phenomenon is caused mainly by the influence of applied electric field and the change of carrier transport mode.
    • 基金项目: 国家自然科学基金(批准号: 61274106, 11175138)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61274106, 11175138).
    [1]

    Marshall P W, Carts M A, Campbell A 2000 IEEE Trans. Nucl. Sci. 47 2669

    [2]

    Cressler J D 2005 Proc. IEEE 93 1559

    [3]

    Cressler J D 2010 NASA NEPP Electronics Technology Workshop

    [4]

    Cressler J D, Niu G F 2003 Silicon-Germanium Heterojunction Bipolar Transistors (1st Ed.) (Boston London: Artech House) p20

    [5]

    Diestelhorst R M 2009 M. S. Dissertation (Georgia: Georgia Institute of Technology)

    [6]

    Chai C C, Ma Z Y, Ren X R, Yang Y T, Zhao Y B, Xin H 2013 Chin. Phys. B 22 068502

    [7]

    Guo Y, Chen J J, He Y B, Liang B, Liu B W 2013 Chin. Phys. B 22 046103

    [8]

    Sutton A K, Prakash A P G, Jun B, et al. 2006 IEEE Trans. Nucl. Sci. 53 3166

    [9]

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K, Zhao Y B 2012 Chin. Phys. B 21 098502

    [10]

    Bellini M 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology)

    [11]

    Hu H Y, Shu J, Zhang H M, Song J J, Xuan R X, Qin S S, Qu J T 2011 Acta Phys. Sin. 60 017303 (in Chinese) [胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛 2011 物理学报 60 017303]

    [12]

    Zhao X, Zhang W R, Jin D Y, Fu Q, Chen L, Xie H Y, Zhang Y J 2012 Acta Phys. Sin. 61 134401 (in Chinese) [赵昕, 张万荣, 金冬月, 付强, 陈亮, 谢红云, 张瑜洁 2012 物理学报 61 134401]

    [13]

    Akil K S 2005 Ph. D. Dissertation (Georgia: Georgia Institute of Technology)

    [14]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501]

    [15]

    Zhang J X, Guo H X, Wen L, Guo Q, Cui J W, Wang X, Deng W, Zhen Q W, Fan X, Xiao Y 2014 J. Semicond. 35 044354

    [16]

    Varadharajaperumal M 2010 Ph. D. Dissertation (Alabama: Auburn University)

    [17]

    Xu Z Y, Niu G F, Luo L, Cressler J D, Alles M L, Reed R A, Mantooth H A, Holmes J, Marshall P W 2010 IEEE Tran. Nucl. Sci. 57 3206

    [18]

    Liang B, Chen S M, Liu B W 2008 J. Semiconductors 29 1692

    [19]

    Dodd P E, Massengill L W 2003 IEEE Trans. Nucl. Sci. 50 583

  • [1]

    Marshall P W, Carts M A, Campbell A 2000 IEEE Trans. Nucl. Sci. 47 2669

    [2]

    Cressler J D 2005 Proc. IEEE 93 1559

    [3]

    Cressler J D 2010 NASA NEPP Electronics Technology Workshop

    [4]

    Cressler J D, Niu G F 2003 Silicon-Germanium Heterojunction Bipolar Transistors (1st Ed.) (Boston London: Artech House) p20

    [5]

    Diestelhorst R M 2009 M. S. Dissertation (Georgia: Georgia Institute of Technology)

    [6]

    Chai C C, Ma Z Y, Ren X R, Yang Y T, Zhao Y B, Xin H 2013 Chin. Phys. B 22 068502

    [7]

    Guo Y, Chen J J, He Y B, Liang B, Liu B W 2013 Chin. Phys. B 22 046103

    [8]

    Sutton A K, Prakash A P G, Jun B, et al. 2006 IEEE Trans. Nucl. Sci. 53 3166

    [9]

    Ma Z Y, Chai C C, Ren X R, Yang Y T, Chen B, Song K, Zhao Y B 2012 Chin. Phys. B 21 098502

    [10]

    Bellini M 2009 Ph. D. Dissertation (Georgia: Georgia Institute of Technology)

    [11]

    Hu H Y, Shu J, Zhang H M, Song J J, Xuan R X, Qin S S, Qu J T 2011 Acta Phys. Sin. 60 017303 (in Chinese) [胡辉勇, 舒钰, 张鹤鸣, 宋建军, 宣荣喜, 秦珊珊, 屈江涛 2011 物理学报 60 017303]

    [12]

    Zhao X, Zhang W R, Jin D Y, Fu Q, Chen L, Xie H Y, Zhang Y J 2012 Acta Phys. Sin. 61 134401 (in Chinese) [赵昕, 张万荣, 金冬月, 付强, 陈亮, 谢红云, 张瑜洁 2012 物理学报 61 134401]

    [13]

    Akil K S 2005 Ph. D. Dissertation (Georgia: Georgia Institute of Technology)

    [14]

    Zhang J X, Guo H X, Guo Q, Wen L, Cui J W, Xi S B, Wang X, Deng W 2013 Acta Phys. Sin. 62 048501 (in Chinese) [张晋新, 郭红霞, 郭旗, 文林, 崔江维, 席善斌, 王信, 邓伟 2013 物理学报 62 048501]

    [15]

    Zhang J X, Guo H X, Wen L, Guo Q, Cui J W, Wang X, Deng W, Zhen Q W, Fan X, Xiao Y 2014 J. Semicond. 35 044354

    [16]

    Varadharajaperumal M 2010 Ph. D. Dissertation (Alabama: Auburn University)

    [17]

    Xu Z Y, Niu G F, Luo L, Cressler J D, Alles M L, Reed R A, Mantooth H A, Holmes J, Marshall P W 2010 IEEE Tran. Nucl. Sci. 57 3206

    [18]

    Liang B, Chen S M, Liu B W 2008 J. Semiconductors 29 1692

    [19]

    Dodd P E, Massengill L W 2003 IEEE Trans. Nucl. Sci. 50 583

计量
  • 文章访问数:  3795
  • PDF下载量:  318
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-03
  • 修回日期:  2014-08-21
  • 刊出日期:  2014-12-05

不同偏置影响锗硅异质结双极晶体管单粒子效应的三维数值仿真研究

  • 1. 西安交通大学, 西安 710049;
  • 2. 中国科学院新疆理化技术研究所, 中科院特殊环境功能材料与器件重点实验室, 乌鲁木齐 830011;
  • 3. 西北核技术研究所, 西安 710024
    基金项目: 国家自然科学基金(批准号: 61274106, 11175138)资助的课题.

摘要: 针对国产锗硅异质结双极晶体管(SiGe HBT), 采用半导体器件三维计算机模拟工具, 建立单粒子效应三维损伤模型, 研究不同偏置状态对SiGe HBT单粒子效应的影响. 分析比较不同偏置下重离子入射器件后, 各端口电流瞬变峰值和电荷收集量随时间的变化关系, 获得SiGe HBT单粒子效应与偏置的响应关系. 结果表明: 不同端口对单粒子效应响应的最劣偏置不同, 同一端口电荷收集量和瞬变电流峰值的最劣偏置也有所差异. 载流子输运方式变化和外加电场影响是造成这种现象的主要原因.

English Abstract

参考文献 (19)

目录

    /

    返回文章
    返回