搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究

王庆宝 张仲 徐锡金 吕英波 张芹

引用本文:
Citation:

N, Fe, La三掺杂锐钛矿型TiO2能带调节的理论与实验研究

王庆宝, 张仲, 徐锡金, 吕英波, 张芹

Theoretical and experimental studies on N, Fe, La co-doped anatase TiO2 band adjustment

Wang Qing-Bao, Zhang Zhong, Xu Xi-Jin, Lü Ying-Bao, Zhang Qin
PDF
导出引用
  • 采用基于密度泛函理论(DFT)的平面波超软赝势方法(PWPP), 利用Material studio 计算N, Fe, La三种元素掺杂引起的锐钛矿TiO2晶体结构、能带结构和态密度变化. 并通过溶胶-凝胶法制得锐钛矿型本征TiO2, N, Fe共掺杂TiO2和N, Fe, La共掺杂TiO2; 用X射线衍射和扫描电镜表征结构; 紫外-可见分光光度计检测TiO2对甲基橙的降解效率变化. 计算结果表明, 由于N, Fe, La三掺杂TiO2的晶格体积、键长等发生变化, 导致晶体对称性下降, 光生电子-空穴对有效分离, 同时在导带底和价带顶形成杂质能级, TiO2禁带宽度由1.78 eV变为1.35 eV, 减小25%, 光吸收带边红移, 态密度数增加, 电子跃迁概率提升, 光催化能力增加. 实验结果表明: 离子掺杂使颗粒变小, 粒径大小: 本征TiO2>N/Fe_TiO2>N/Fe/La_TiO2, 并测得N/Fe/La_TiO2发光峰425 nm, 能隙减小, 光催化能力比N/Fe_TiO2强, 增强原因是杂质能级和电子态数量增加引起.
    Based on the plane wave method (PWPP) of densiy functional theory (DFT) we model the N, Fe, La three elements co-doped anatase TiO2 crystal structure and calculate its band structure and density of states with Material Studio. By the sol-gel method, the intrinsic anatase TiO2 and the anatase TiO2 with N, Fe, La three elements co-doping are prepared and investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results indicate that the changes of the N, Fe, La co-doped TiO2 lattice volume and its bond length will result in a decline of the crystal symmetry and the effective separation of the electron-hole pair. Impurity level appearing at the bottom of the conduction band and at the top of valence band leads to the decrease of the TiO2 forbidden band width(1.78 eV to 1.35 eV, reduced by 25%), the red shift of light absorption edge, the increase of density of states as well as, the improve ment of electron transition probability and the photocatalytic efficiency of TiO2. Ion doping makes the particles in doped TiO2 become smaller, i.e. the size of particles in TiO2>N/Fe_TiO2>N/Fe/La_TiO2, the emission peak of the N/Fe/La: TiO2 is 425 nm and its energy gap is smaller than that of the intrinsic TiO2. The measured N/Fe/La: TiO2 photocatalytic ability is stronger than the N/Fe: TiO2, the origin can be due to the increasing number of the electronic states and the impurity energy levels.
    • 基金项目: 国家青年科学基金(批准号: 11104114)、国家自然科学基金(批准号: 11304120)和山东省优秀中青年科学家奖励基金(批准号: BS2012CL005)资助的课题.
    • Funds: Project supported by the National Science Foundation for Young Scientists of China (Grant No. 11104114), the National Natural Science Foundation of China (Grant No. 11304120), and the Promotive Research Fund for Young and Middle-aged Scientists of Shandong Province, China (Grant No. BS2012CL005).
    [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [3]

    Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048

    [4]

    Choi W, Termin A, Hoffmann M R 1994 J. Chem. Phys. 98 13669.

    [5]

    Asahi R, Morikawa T, Ohwakl T 2001 Science 293 269.

    [6]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]

    [7]

    Li C, Hou Q Y, Zhang Z Z, Zhang B 2012 Acta Phys. Sin. 61 077102 (in Chinese) [李聪, 侯清玉, 张振铎, 张冰 2012 物理学报 61 077102]

    [8]

    Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305

    [9]

    Yang Y, Feng Q, Wang W H, Wang Y 2013 J. Semicond. Tech. Sci. 34 073004

    [10]

    Hou X G, Huang M D, Wu X L, Liu A D 2009 Sci. China Technol. Sc. 52 838

    [11]

    Zahid A, Iftikhar A, Banaras K, Imad K 2013 Chin. Phys. Lett. 30 047504

    [12]

    Hebenstreit E L, Hebenstreit W, Diebold U 2000 Surface Science 461 87

    [13]

    Zhang X J, Zhang G F, Jin H X, Zhu L D 2013 Acta Phys. Sin. 62 017102 (in Chinese) [张学军, 张光富, 金辉霞, 朱良迪, 柳清菊 2013 物理学报 62 017102]

    [14]

    Pham T D, Lee B K 2014 Appl. Surf. Sci. 296 15

    [15]

    Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 016101

    [16]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [17]

    Liu S Y, Tang W H, Feng Q G, Li J Z, Sun J H. 2010 J. Inorg. Mater. 25 921

    [18]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [19]

    Gao G Y, Yao K L, Liu Z L 2006 Phys. Lett. A 359 523

    [20]

    Gao G Y, Yao K L, Liu Z L, Zhang J, Li X L, Zhang J Q, Liu N 2007 J. Magn. Magn. Mater. 313 210

    [21]

    Sun T 2012 M. S. Thesis (Xi'an: NorthwestUniversity) (in Chinese) [孙涛2012 硕士学位论文(西安: 西北大学)]

    [22]

    Liu L Y, Wang R Z, Zhu M K, Hou Y D 2013 Chin. Phys. B 22 036401

    [23]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [24]

    Liu S Y, Tang W H, Feng Q G 2010 J. Inorg. Mater 25 921.

    [25]

    Zhang Z H, Yu Y J, Wang P 2012 Acs. Appl. Mater. Inter. 4 990

    [26]

    Zhao J G, Zhang W Y, Ma Z W, Xie E Q, Zhao A K, Liu Z J 2011 Chin. Phys. B 20 087701

    [27]

    Ding P, Liu F M, Zhou C Q, Zhou W W, Zhang H, Cai L G, Zeng L G 2010 Chin. Phys. B 19 118102

    [28]

    Guo W X, Zhang F, Lin C J 2012 Adv. Mater. 24 4761

    [29]

    Liu B T, Huang Y J, Wen Y 2012 J Mater. Chem. A 22 7484

    [30]

    Palmas S, Pozzo A D, Delogu F 2012 J. Power Sources 204 265

  • [1]

    Fujishima A, Honda K 1972 Nature 238 37

    [2]

    Ceperley D M, Alder B J 1980 Phys. Rev. Lett. 45 566

    [3]

    Perdew J P, Zunger A 1981 Phy. Rev. B 23 5048

    [4]

    Choi W, Termin A, Hoffmann M R 1994 J. Chem. Phys. 98 13669.

    [5]

    Asahi R, Morikawa T, Ohwakl T 2001 Science 293 269.

    [6]

    Zhang X J, Gao P, Liu Q J 2010 Acta Phys. Sin. 59 4930 (in Chinese) [张学军, 高攀, 柳清菊 2010 物理学报 59 4930]

    [7]

    Li C, Hou Q Y, Zhang Z Z, Zhang B 2012 Acta Phys. Sin. 61 077102 (in Chinese) [李聪, 侯清玉, 张振铎, 张冰 2012 物理学报 61 077102]

    [8]

    Li W, Wei S H, Duan X M 2014 Chin. Phys. B 23 027305

    [9]

    Yang Y, Feng Q, Wang W H, Wang Y 2013 J. Semicond. Tech. Sci. 34 073004

    [10]

    Hou X G, Huang M D, Wu X L, Liu A D 2009 Sci. China Technol. Sc. 52 838

    [11]

    Zahid A, Iftikhar A, Banaras K, Imad K 2013 Chin. Phys. Lett. 30 047504

    [12]

    Hebenstreit E L, Hebenstreit W, Diebold U 2000 Surface Science 461 87

    [13]

    Zhang X J, Zhang G F, Jin H X, Zhu L D 2013 Acta Phys. Sin. 62 017102 (in Chinese) [张学军, 张光富, 金辉霞, 朱良迪, 柳清菊 2013 物理学报 62 017102]

    [14]

    Pham T D, Lee B K 2014 Appl. Surf. Sci. 296 15

    [15]

    Lee J H, Hevia D F, Selloni A 2013 Phys. Rev. Lett. 110 016101

    [16]

    Yang K, Dai Y, Huang B 2008 Chem. Phys. Lett. 456 71

    [17]

    Liu S Y, Tang W H, Feng Q G, Li J Z, Sun J H. 2010 J. Inorg. Mater. 25 921

    [18]

    Song C L, Yang Z H, Su T, Wang K K, Wang J, Liu Y, Han G R 2014 Chin. Phys. B 23 057101

    [19]

    Gao G Y, Yao K L, Liu Z L 2006 Phys. Lett. A 359 523

    [20]

    Gao G Y, Yao K L, Liu Z L, Zhang J, Li X L, Zhang J Q, Liu N 2007 J. Magn. Magn. Mater. 313 210

    [21]

    Sun T 2012 M. S. Thesis (Xi'an: NorthwestUniversity) (in Chinese) [孙涛2012 硕士学位论文(西安: 西北大学)]

    [22]

    Liu L Y, Wang R Z, Zhu M K, Hou Y D 2013 Chin. Phys. B 22 036401

    [23]

    Wang Q, Liang J F, Zhang R H, Li Q, Dai J F 2013 Chin. Phys. B 22 057801

    [24]

    Liu S Y, Tang W H, Feng Q G 2010 J. Inorg. Mater 25 921.

    [25]

    Zhang Z H, Yu Y J, Wang P 2012 Acs. Appl. Mater. Inter. 4 990

    [26]

    Zhao J G, Zhang W Y, Ma Z W, Xie E Q, Zhao A K, Liu Z J 2011 Chin. Phys. B 20 087701

    [27]

    Ding P, Liu F M, Zhou C Q, Zhou W W, Zhang H, Cai L G, Zeng L G 2010 Chin. Phys. B 19 118102

    [28]

    Guo W X, Zhang F, Lin C J 2012 Adv. Mater. 24 4761

    [29]

    Liu B T, Huang Y J, Wen Y 2012 J Mater. Chem. A 22 7484

    [30]

    Palmas S, Pozzo A D, Delogu F 2012 J. Power Sources 204 265

  • [1] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算. 物理学报, 2021, 70(3): 037101. doi: 10.7498/aps.70.20201287
    [2] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究. 物理学报, 2018, 67(10): 107102. doi: 10.7498/aps.67.20172290
    [3] 戚玉敏, 陈恒利, 金朋, 路洪艳, 崔春翔. 第一性原理研究Mn和Cu掺杂六钛酸钾(K2Ti6O13)的电子结构和光学性质. 物理学报, 2018, 67(6): 067101. doi: 10.7498/aps.67.20172356
    [4] 潘凤春, 徐佳楠, 杨花, 林雪玲, 陈焕铭. 非掺杂锐钛矿相TiO2铁磁性的第一性原理研究. 物理学报, 2017, 66(5): 056101. doi: 10.7498/aps.66.056101
    [5] 朱玥, 李永成, 王福合. Li掺杂对MgH2(001)表面H2分子扩散释放影响的第一性原理研究. 物理学报, 2016, 65(5): 056801. doi: 10.7498/aps.65.056801
    [6] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究. 物理学报, 2015, 64(8): 087101. doi: 10.7498/aps.64.087101
    [7] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究. 物理学报, 2015, 64(20): 207101. doi: 10.7498/aps.64.207101
    [8] 潘凤春, 林雪玲, 陈焕铭. C掺杂金红石相TiO2的电子结构和光学性质的第一性原理研究. 物理学报, 2015, 64(22): 224218. doi: 10.7498/aps.64.224218
    [9] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究. 物理学报, 2014, 63(16): 163101. doi: 10.7498/aps.63.163101
    [10] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质. 物理学报, 2013, 62(4): 047101. doi: 10.7498/aps.62.047101
    [11] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究. 物理学报, 2013, 62(18): 187102. doi: 10.7498/aps.62.187102
    [12] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究. 物理学报, 2013, 62(3): 037103. doi: 10.7498/aps.62.037103
    [13] 刘芳, 姜振益. 第一性原理研究Eu/N共掺杂锐钛矿TiO2光催化剂的电子和光学性质. 物理学报, 2013, 62(19): 193103. doi: 10.7498/aps.62.193103
    [14] 彭丽萍, 夏正才, 尹建武. 金红石相和锐钛矿相TiO2本征缺陷的第一性原理计算. 物理学报, 2012, 61(3): 037103. doi: 10.7498/aps.61.037103
    [15] 彭丽萍, 夏正才, 杨昌权. 金属和非金属共掺杂锐钛矿相TiO2的第一性原理计算. 物理学报, 2012, 61(12): 127104. doi: 10.7498/aps.61.127104
    [16] 吴忠浩, 徐明, 段文倩. Fe掺杂对溶胶凝胶法制备的ZnO: Ni薄膜结构及发光特性的影响. 物理学报, 2012, 61(13): 137502. doi: 10.7498/aps.61.137502
    [17] 马新国, 江建军, 梁 培. 锐钛矿型TiO2(101)面本征点缺陷的理论研究. 物理学报, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [18] 侯兴刚, 刘安东. V+注入锐钛矿TiO2第一性原理研究. 物理学报, 2007, 56(8): 4896-4900. doi: 10.7498/aps.56.4896
    [19] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算. 物理学报, 2006, 55(8): 4208-4213. doi: 10.7498/aps.55.4208
    [20] 宋功保, 刘福生, 彭同江, 梁敬魁, 饶光辉. 金属离子掺杂对TiO2/白云母纳米复合材料中TiO2的颗粒形态及相组成的影响. 物理学报, 2002, 51(12): 2793-2797. doi: 10.7498/aps.51.2793
计量
  • 文章访问数:  5106
  • PDF下载量:  990
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-14
  • 修回日期:  2014-09-10
  • 刊出日期:  2015-01-05

/

返回文章
返回