搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sm3+掺杂NaLa(WO4)2单一基质白光荧光粉制备及发光性能

姜洪喜 吕树臣

引用本文:
Citation:

Sm3+掺杂NaLa(WO4)2单一基质白光荧光粉制备及发光性能

姜洪喜, 吕树臣

Synthesis and properties of Sm3+ doped NaLa(WO4)2 single matrix white phosphors

Jiang Hong-Xi, Lü Shu-Chen
PDF
HTML
导出引用
  • 单离子掺杂体系单一基质白光荧光粉可以有效克服紫外芯片+三基色荧光粉获得白光方案中颗粒分散性和沉降性不均的问题, 克服荧光粉彼此间发光再吸收及三基色配比调控等问题. 本文采用熔融盐法制备了Sm3+离子单掺NaLa(WO4)2:x Sm3+白光荧光粉. 在紫外光激发下, ${\rm{WO}}_{4}^{2-}$自激活发出的蓝绿光, 与Sm3+发射的绿光、黄光、橙光和红光混合得到了白光. 在250 nm激发下, 荧光粉会发出冷白光; 在403 nm激发下会发出暖白光. 随着Sm3+掺杂浓度增加, 相对色温逐渐降低. 所制备的样品均为纯的四方相结构, 晶粒形貌为不规则菱形薄片. 通过分析实验数据确定Sm3+离子间的能量猝灭类型为电偶极-电偶极作用. 得到的NaLa(WO4)2: x Sm3+荧光粉具有较高的稳定性, 能被近紫外LED芯片有效地激发, 可作为单离子掺杂单一基质白光荧光粉潜在候选.
    Single ion doped single phase white emitting phosphors have some special advantages and great potential applications in the field of high quality LED lighting. This type of phosphors can effectively solve the problem of uneven particle dispersion and sedimentation in the white light scheme obtained by UV chip plus trichromatic phosphor, and solve the problems of the luminescence and reabsorption between phosphors and the regulation of trichromatic ratio. A comparison of the single-ion doping luminescent material with the multi-ion doping system shows that the single-ion doping luminescent material is simpler in both preparation process and luminescence color adjustment, which can achieve higher color rendering index, more easily controlled color temperature and closer to the color coordinates of white light. According to the principle of colorimetry and luminescence, light of two or more wavelengths may be combined to obtain white light emission. Under the UV excitation, the Sm3+ ions emit relatively strong green, yellow, orange and red light at 580–670 nm. Under UV excitation, the broadband spectrum of ${\rm{WO}}_{4}^{2-} $ self-activated emission covers almost the whole visible region, but the blue-green light is strong in the short wavelength region and the yellow-orange-red light is weak in the long wavelength region. When Sm3+ ions are doped into tungstate, Sm3+ ions’ luminescence can effectively supplement the weak luminescence intensity of tungstate in the long-wave region, and white light can be obtained. Under the excitation of 250 nm, the phosphor emits cold white light, and warm white light under the excitation of 403 nm. The experimental results show that Sm3+ ions have a significant effect on the correlated color temperature adjustment of self-activated luminescence of NLW phosphors. All the prepared samples are crystallized into the tetragonal crystal phase structures and that their morphologies present rhombic sheet. By analyzing the experimental data, the type of energy transfer between Sm3+ ions is determined to be electrical dipole–electrical dipole interaction. The NLW: xSm3+ phosphor has high stability and can be effectively excited by ultraviolet/near-ultraviolet light, which can be used as a potential candidate of single matrix single-ion doped white phosphors.
      通信作者: 吕树臣, hsdlsc63@126.com
      Corresponding author: Lü Shu-Chen, hsdlsc63@126.com
    [1]

    郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏 2019 物理学报 68 247303Google Scholar

    Guo W L, Deng J, Wang J L, Wang L, Tai J P 2019 Acta Phys. Sin. 68 247303Google Scholar

    [2]

    Xia H, Lei L, Hong W Q, Xu S Q 2018 J. Alloy Compd. 757 239Google Scholar

    [3]

    苏小娜, 万英, 周芷萱, 胡莲莲 2017 物理学报 66 230701Google Scholar

    Su X N, Wan Y, Zhou Z X, Hu L L 2017 Acta Phys. Sin. 66 230701Google Scholar

    [4]

    Jiang G C, Wei X T, Chen Y H, Duan C K, Yin M, Yang B, Cao W W 2015 Mater. Lett. 143 98Google Scholar

    [5]

    Du P, Wu Y F, Yu J S 2018 RSC Adv. 12 6419Google Scholar

    [6]

    Du P, Yu J S 2016 Mater. Res. Bull. 84 303Google Scholar

    [7]

    Du P, Huang X Y, Yu J S 2018 Chem. Eng. J. 337 91Google Scholar

    [8]

    梁思思, 尚蒙蒙, 林君 2018 物理化学学报 34 237Google Scholar

    Liang S S, Shang M M, Lin J 2018 Acta Phys-Chem. Sin. 34 237Google Scholar

    [9]

    曹逊, 曹翠翠, 孙光耀, 金平实 2019 无机材料学报 34 1145Google Scholar

    Cao X, Cao C C, Sun G Y, Jin P S 2019 J. Inorg. Mater. 34 1145Google Scholar

    [10]

    Tian L, Wang L X, Zhang L, Zhang Q T, Ding W H, Yu M X 2015 J. Mater. Sci-Mater El. 26 8507Google Scholar

    [11]

    Hsu C H, Das S, Lu C H 2012 J. Electro. Chem. Soc. 159 193Google Scholar

    [12]

    Meng J X, Yang C T, Chen Q Q 2010 J. Lumin. 130 1320Google Scholar

    [13]

    Wu Z C, Liu J, Hou W G 2010 J. Alloy Compd. 498 139Google Scholar

    [14]

    Du P, Yu J S 2017 Dyes. Pigments. 147 16Google Scholar

    [15]

    Luwang M N, Ningthoujam R S, Srivastava S K 2011 J. Mater. Chem. 21 5326Google Scholar

    [16]

    任艳东, 吕树臣 2011 物理学报 60 087804Google Scholar

    Ren Y D, Lü S C 2011 Acta Phys. Sin. 60 087804Google Scholar

    [17]

    孟庆裕, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804Google Scholar

    Meng Q Y, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804Google Scholar

    [18]

    刘艳, 姜莹莹, 刘桂霞, 王进贤 2013 无机化学学报 29 277Google Scholar

    Liu Y, Jiang Y Y, Liu G X, Wang J X 2013 Inorg. Chem. 29 277Google Scholar

    [19]

    Du P, Wu S Q, Yu J S 2016 J. Lumin. 173 192Google Scholar

    [20]

    Jiang H X, Lü S C 2021 Mater. Res. Bull. 135 111123Google Scholar

    [21]

    Li L L, Yang X Y, Li J Q, et al. 2020 J. Lumin. 173 117377Google Scholar

    [22]

    毕长虹, 孟庆裕 2013 物理学报 19 197804Google Scholar

    Bi C H, Meng Q Y 2013 Acta Phys. Sin. 19 197804Google Scholar

    [23]

    Chanu T T T, Singh N R 2016 J. Mater. Sci-Mater. El. 28 3909Google Scholar

    [24]

    Liu Y, Liu G X, Dong X T, Wang J X, Yu W S 2014 RSC Adv. 4 58708Google Scholar

    [25]

    Cao R P, Xu H D, Peng D D, Jiang S H 2015 Supperlattice Microst. 88 5Google Scholar

    [26]

    Zhai Y Q, Wang M, Zhao Q, Yang H L, Ding H H 2016 J. Mater. Sci-Mater. El. 27 279Google Scholar

    [27]

    Durirajan A, Balaji D, Kavi Rasu K, et al. 2016 J. Lumin. 170 743Google Scholar

    [28]

    陈炳炎, 刘粤惠, 陈东丹, 姜中宏 2005 物理学报 54 3418Google Scholar

    Chen B Y, Liu Y H, Chen D D, Jiang Z H 2005 Acta Phys. Sin. 54 3418Google Scholar

    [29]

    孟庆裕, 刘志鑫, 孙文军 2013 物理学报 62 097801Google Scholar

    Meng Q Y, Liu Z X, Sun W J 2013 Acta Phys. Sin. 62 097801Google Scholar

    [30]

    Dexter D L, Schulman J H 1954 J. Chem. Phys. 22 1063Google Scholar

  • 图 1  晶体结构信息 (a) NLW:x Sm3+荧光粉的XRD谱; (b) (112)峰位置随Sm3+浓度变化偏移; (c) NLW:2%Sm3+ XRD谱的Rietveld精修; (d) NLW:x Sm3+晶体结构图

    Fig. 1.  Crystal structure information: (a) XRD patterns of NLW:x Sm3+ phosphors; (b) offset of the (112) peak position with the Sm3+ concentration; (c) rietveld refinement of XRD pattern of NLW:2%Sm3+; (d) the crystal structure of NLW:x Sm3+.

    图 2  NLW:2%Sm3+样品的表征 (a) SEM; (b) EDS; (c)−(g) 元素Mapping

    Fig. 2.  Characterization of NLW:2%Sm3+ sample: (a) SEM; (b) EDS; (c)−(g) element mapping.

    图 3  样品NLW:2%Sm3+激发光谱

    Fig. 3.  Excitation spectrum of NLW:2%Sm3+.

    图 4  样品在403 nm激发下发射谱 (a) NLW:x Sm3+(x = 1%−5%); (b) NLW:2%Sm3+

    Fig. 4.  Emission spectra excited at 403 nm: (a) NLW:x Sm3+ (x = 1%−5%); (b) NLW:2%Sm3+.

    图 5  样品在250 nm激发下发射谱 (a) NLW:x Sm3+(x = 1%−5%); (b) NLW:2%Sm3+发射谱的宽带峰拟合; (c) NLW:2%Sm3+渲染图

    Fig. 5.  Emission spectra excited at 250 nm: (a) NLW:x Sm3+ (x = 1%−5%); (b) fitting broad band peak of emission spectrum of NLW:2%Sm3+; (c) rendering picture of NLW:2%Sm3+.

    图 6  样品NLW:x Sm3+的色度图与色坐标 (a) 250 nm激发下; (b) 403 nm激发下

    Fig. 6.  Chromaticity diagrams and color coordinates of NLW:x Sm3+: (a) Excited at 250 nm; (b) excited at 403 nm.

    图 7  ${\rm{WO}}_{4}^{2-} $向Sm3+能量转移过程

    Fig. 7.  Energy transfer process from ${\rm{WO}}_{4}^{2-} $to Sm3+.

    图 8  系列样品NLW:x Sm3+中Sm3+的衰减曲线与荧光寿命

    Fig. 8.  Decay curves and fluorescence lifetimes of Sm3+ in series NLW:x Sm3+ sample.

    图 9  NLW:x Sm3+的lg(I/x)与lg(x)关系曲线

    Fig. 9.  Curve of lg(I/x) versus lg(x) for NLW:x Sm3+.

    表 1  NLW:x Sm3+晶格参数

    Table 1.  Lattice constants of NLW:x Sm3+.

    NLW:xSm3+

    concentrations
    acunit cell

    volume/Å3
    1%5.54211.692359.1
    2%5.53911.699358.9
    3%5.53111.692357.7
    4%5.53011.691357.5
    5%5.52811.690357.2
    下载: 导出CSV

    表 2  在403 nm激发下NLW:x Sm3+I644/I604比值

    Table 2.  Ratios of I644 to I604 of NLW:x Sm3+ excited at 403 nm.

    Sm3+ concentrations/%12345
    I644/I6040.931.071.051.041.02
    下载: 导出CSV

    表 3  NLW:x Sm3+色坐标和相对色温

    Table 3.  Color coordinates and relative color temperatures of NLW:x Sm3+ samples.

    Sm3+ concentrations/%12345
    λex = 250 nm(0.270, 0.249)

    16618 K
    (0.287, 0.248)

    12435 K
    (0.288, 0.258)

    11032 K
    (0.283, 0.255)

    12346 K
    (0.313, 0.280)

    6971 K
    λex = 403 nm(0.298, 0.251)

    9963 K
    (0.374, 0.286)

    3057 K
    (0.377, 0.282)

    2911 K
    (0.376, 0.286)

    3004 K
    (0.357, 0.279)

    3798 K
    下载: 导出CSV
  • [1]

    郭伟玲, 邓杰, 王嘉露, 王乐, 邰建鹏 2019 物理学报 68 247303Google Scholar

    Guo W L, Deng J, Wang J L, Wang L, Tai J P 2019 Acta Phys. Sin. 68 247303Google Scholar

    [2]

    Xia H, Lei L, Hong W Q, Xu S Q 2018 J. Alloy Compd. 757 239Google Scholar

    [3]

    苏小娜, 万英, 周芷萱, 胡莲莲 2017 物理学报 66 230701Google Scholar

    Su X N, Wan Y, Zhou Z X, Hu L L 2017 Acta Phys. Sin. 66 230701Google Scholar

    [4]

    Jiang G C, Wei X T, Chen Y H, Duan C K, Yin M, Yang B, Cao W W 2015 Mater. Lett. 143 98Google Scholar

    [5]

    Du P, Wu Y F, Yu J S 2018 RSC Adv. 12 6419Google Scholar

    [6]

    Du P, Yu J S 2016 Mater. Res. Bull. 84 303Google Scholar

    [7]

    Du P, Huang X Y, Yu J S 2018 Chem. Eng. J. 337 91Google Scholar

    [8]

    梁思思, 尚蒙蒙, 林君 2018 物理化学学报 34 237Google Scholar

    Liang S S, Shang M M, Lin J 2018 Acta Phys-Chem. Sin. 34 237Google Scholar

    [9]

    曹逊, 曹翠翠, 孙光耀, 金平实 2019 无机材料学报 34 1145Google Scholar

    Cao X, Cao C C, Sun G Y, Jin P S 2019 J. Inorg. Mater. 34 1145Google Scholar

    [10]

    Tian L, Wang L X, Zhang L, Zhang Q T, Ding W H, Yu M X 2015 J. Mater. Sci-Mater El. 26 8507Google Scholar

    [11]

    Hsu C H, Das S, Lu C H 2012 J. Electro. Chem. Soc. 159 193Google Scholar

    [12]

    Meng J X, Yang C T, Chen Q Q 2010 J. Lumin. 130 1320Google Scholar

    [13]

    Wu Z C, Liu J, Hou W G 2010 J. Alloy Compd. 498 139Google Scholar

    [14]

    Du P, Yu J S 2017 Dyes. Pigments. 147 16Google Scholar

    [15]

    Luwang M N, Ningthoujam R S, Srivastava S K 2011 J. Mater. Chem. 21 5326Google Scholar

    [16]

    任艳东, 吕树臣 2011 物理学报 60 087804Google Scholar

    Ren Y D, Lü S C 2011 Acta Phys. Sin. 60 087804Google Scholar

    [17]

    孟庆裕, 李明, 刘林峰, 曲秀荣, 万维龙, 孙江亭 2012 物理学报 61 107804Google Scholar

    Meng Q Y, Li M, Liu L F, Qu X R, Wan W L, Sun J T 2012 Acta Phys. Sin. 61 107804Google Scholar

    [18]

    刘艳, 姜莹莹, 刘桂霞, 王进贤 2013 无机化学学报 29 277Google Scholar

    Liu Y, Jiang Y Y, Liu G X, Wang J X 2013 Inorg. Chem. 29 277Google Scholar

    [19]

    Du P, Wu S Q, Yu J S 2016 J. Lumin. 173 192Google Scholar

    [20]

    Jiang H X, Lü S C 2021 Mater. Res. Bull. 135 111123Google Scholar

    [21]

    Li L L, Yang X Y, Li J Q, et al. 2020 J. Lumin. 173 117377Google Scholar

    [22]

    毕长虹, 孟庆裕 2013 物理学报 19 197804Google Scholar

    Bi C H, Meng Q Y 2013 Acta Phys. Sin. 19 197804Google Scholar

    [23]

    Chanu T T T, Singh N R 2016 J. Mater. Sci-Mater. El. 28 3909Google Scholar

    [24]

    Liu Y, Liu G X, Dong X T, Wang J X, Yu W S 2014 RSC Adv. 4 58708Google Scholar

    [25]

    Cao R P, Xu H D, Peng D D, Jiang S H 2015 Supperlattice Microst. 88 5Google Scholar

    [26]

    Zhai Y Q, Wang M, Zhao Q, Yang H L, Ding H H 2016 J. Mater. Sci-Mater. El. 27 279Google Scholar

    [27]

    Durirajan A, Balaji D, Kavi Rasu K, et al. 2016 J. Lumin. 170 743Google Scholar

    [28]

    陈炳炎, 刘粤惠, 陈东丹, 姜中宏 2005 物理学报 54 3418Google Scholar

    Chen B Y, Liu Y H, Chen D D, Jiang Z H 2005 Acta Phys. Sin. 54 3418Google Scholar

    [29]

    孟庆裕, 刘志鑫, 孙文军 2013 物理学报 62 097801Google Scholar

    Meng Q Y, Liu Z X, Sun W J 2013 Acta Phys. Sin. 62 097801Google Scholar

    [30]

    Dexter D L, Schulman J H 1954 J. Chem. Phys. 22 1063Google Scholar

  • [1] 郑明, 杨健, 张怡笑, 关朋飞, 程奥, 范贺良. Sm3+掺杂0.94Bi0.5Na0.5TiO3-0.06BaTiO3无机多功能陶瓷的储能行为和光致发光性质. 物理学报, 2023, 72(17): 177801. doi: 10.7498/aps.72.20230685
    [2] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能. 物理学报, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [3] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [4] 黄静雯, 罗利琼, 金波, 楚士晋, 彭汝芳. 六角星形MoSe2双层纳米片的制备及其光致发光性能. 物理学报, 2017, 66(13): 137801. doi: 10.7498/aps.66.137801
    [5] 彭方, 张庆礼, 王小飞, 张会丽, 丁守军, 刘文鹏, 罗建乔, 孙敦陆, 孙贵花. Nd3+:SrY2O4粉体的制备、结构与光谱性能研究. 物理学报, 2016, 65(1): 014211. doi: 10.7498/aps.65.014211
    [6] 叶松, 王向贤, 侯宜栋, 张志友, 杜惊雷. 自组装银膜增强8-羟基喹啉铝(Alq3)光致发光的实验和理论研究. 物理学报, 2014, 63(8): 087802. doi: 10.7498/aps.63.087802
    [7] 钟红梅, 刘茜, 周遥, 庄建东, 周虎. AlON:Ce3+荧光粉的制备及光谱研究. 物理学报, 2013, 62(8): 087804. doi: 10.7498/aps.62.087804
    [8] 毛金伟, 吕树臣, 曲秀荣, 何冬丽, 孟庆裕. 发光二极管用红色荧光粉Sr0.8-xBaxEu0.2WO4的制备和性质研究. 物理学报, 2013, 62(3): 037803. doi: 10.7498/aps.62.037803
    [9] 刘红利, 郝玉英, 许并社. 白光发光二级管用红色荧光粉LiSrBO3: Eu3+的制备与发光性能研究. 物理学报, 2013, 62(10): 108504. doi: 10.7498/aps.62.108504
    [10] 毕长虹, 孟庆裕. CaWO4:Sm3+荧光粉的发光性质及其能量传递机理. 物理学报, 2013, 62(19): 197804. doi: 10.7498/aps.62.197804
    [11] 任艳东, 吕树臣. 发光二极管用SrWO4:Eu3+红光荧光粉激发谱强度的调控. 物理学报, 2011, 60(8): 087804. doi: 10.7498/aps.60.087804
    [12] 唐红霞, 吕树臣. 发光二极管用红色荧光粉SrMoO4:Eu3+的制备和发射性质. 物理学报, 2011, 60(3): 037805. doi: 10.7498/aps.60.037805
    [13] 林涛, 万能, 韩敏, 徐骏, 陈坤基. SnO2纳米晶体的制备、结构与发光性质. 物理学报, 2009, 58(8): 5821-5825. doi: 10.7498/aps.58.5821
    [14] 冯先进, 马 瑾, 葛松华, 计 峰, 王永利, 杨 帆, 马洪磊. 蓝宝石衬底SnO2:Sb薄膜的制备及结构和光致发光性质. 物理学报, 2007, 56(8): 4872-4876. doi: 10.7498/aps.56.4872
    [15] 彭智伟, 王玲玲, 刘晃清, 黄维清, 邹炳锁. Gd2O3:Eu3+纳米晶的燃烧合成及光致发光性质. 物理学报, 2007, 56(2): 1162-1166. doi: 10.7498/aps.56.1162
    [16] 杨志平, 刘玉峰, 王利伟, 余泉茂, 熊志军, 徐小岭. 用于白光LED的单一基质白光荧光粉Ca2SiO3Cl2:Eu2+,Mn2+的发光性质. 物理学报, 2007, 56(1): 546-550. doi: 10.7498/aps.56.546
    [17] 朱振华, 雷明凯. Er3+掺杂SiO2复合的Al2O3粉末结构及光致发光特性. 物理学报, 2006, 55(9): 4956-4961. doi: 10.7498/aps.55.4956
    [18] 王玉恒, 马 瑾, 计 峰, 余旭浒, 张锡健, 马洪磊. 射频磁控溅射法制备SnO2:Sb薄膜的结构和光致发光性质研究. 物理学报, 2005, 54(4): 1731-1735. doi: 10.7498/aps.54.1731
    [19] 马忠元, 黄信凡, 朱 达, 李 伟, 陈坤基, 冯 端. 原位等离子体逐层氧化a-Si:H/SiO2多层膜的光致发光研究. 物理学报, 2004, 53(8): 2746-2750. doi: 10.7498/aps.53.2746
    [20] 袁放成, 冉广照, 陈源, 张伯蕊, 乔永平, 傅济时, 秦国刚, 马振昌, 宗婉华. 磁控溅射淀积掺Er富Si氧化硅膜中Er3+ 1.54μm光致发光. 物理学报, 2001, 50(12): 2487-2491. doi: 10.7498/aps.50.2487
计量
  • 文章访问数:  5603
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-14
  • 修回日期:  2021-04-21
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-05

/

返回文章
返回