搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子-声子相互作用对平行双量子点体系热电效应的影响

吴海娜 孙雪 公卫江 易光宇

引用本文:
Citation:

电子-声子相互作用对平行双量子点体系热电效应的影响

吴海娜, 孙雪, 公卫江, 易光宇

Influences of electron-phonon interaction on the thermoelectric effect in a parallel double quantum dot system

Wu Hai-Na, Sun Xue, Gong Wei-Jiang, Yi Guang-Yu
PDF
导出引用
  • 量子点体系是一种典型的低维体系, 该体系的独特物理特性有利于提高热电转换效率. 本文采用非平衡态格林函数方法, 选择平行双量子点结构, 详细讨论了电子-声子相互作用对该体系的电导、热电功率、热电优值以及热导等热电效应相关参数的影响, 全面描述了电子-声子相互作用对该结构中热电效应的影响. 理论计算结果表明, 在低温情况下, 该体系中的法诺干涉能够有效增强热电效应, 而电子-声子相互作用通过破坏法诺干涉而在一定程度上抑制电导以及热导过程. 然而, 电子-声子相互作用不会显著地影响热电功率的幅值, 并且热电优值的极值几乎不会改变, 因此在低温条件下电子-声子相互作用并不是破坏量子点体系热电效应的必要条件. 本文的结果将有利于澄清电子-声子相互作用对量子点体系热电效应的影响.
    A quantum-dot system is a typical low-dimensional system, and previous researches showed that its thermoelectric conversion efficiency can be markedy improved due to its unique physical properties. In this poper, we choose the parallel double-quantum-dot structure and discuss the influence of the electron-phonon interaction on the thermoelectric-related parameters, i.e., the electric conductance, thermopower, the figure of merit, and thermal conductance, by using the nonequilibrium Green's function method. Our theoretical calculation results show that under the condition of low temperature, the occurrence of the Fano interference can assist to enhance the thermoelectric effect. When the electron-phonon interaction is taken into account, it can suppress the electric and thermal conductances to a certain extent because of its negative effect on the Fano interterence. However, we readily find that apparently the strengthening of the electron-phonon interaction cannot suppress the maximum of the thermopower. Instead, in some regions, the thermopower has an opportunity to enhance due to the appearance of a new channel caused by the electron-phonon interaction. Meanwhile, the figure of merit is found to cause similar effects to the thermopower. Therefore, in the case of low temperature, the electron-phonon interaction contributes little to the destruction of the thermoelectric effect, namely, it is not the necessary condition for the suppression of the thermoelectric effect. With the increase of temperature, the negative effect of the electron-phonon interaction on the Fano interference becomes relatively distinct, which inevitably weakens the thermoelectric effect. Results of this paper will help to clarify the influence of electron-phonon interaction on the thermoelectric effect.
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: N130505001)和辽宁省教育厅科学研究一般项目(批准号: L2014099)资助的课题.
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of Ministry Education of China (Grant No. N130505001), and the Science Research Foundation of Education Bureau of Liaoning Province, China (Grant No. L2014099).
    [1]

    Dubi Y, Ventra M D 2011 Rev. Mod. Phys. 83 131

    [2]

    Agrait N, Untiedt C, Bollinger G R, Vieira S 2002 Phys. Rev. Lett. 88 216803

    [3]

    Appleyard N, Nicholls J T, Pepper M, Tribe W R, Simmons M Y, Ritchie D A 2000 Phys. Rev. B 62 16275

    [4]

    Kubala B, König J, Pekola J 2008 Phys. Rev. Lett. 100 066801

    [5]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [6]

    Kim T S, Hershfield S 2002 Phys. Rev. Lett. 88 136601

    [7]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [8]

    Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321

    [9]

    Chen X S, Buhmaim H, Molenkamp L W 2000 Phys. Rev. B 61 16801

    [10]

    Chi F, Zheng J, Lu X D, Zhang K C 2011 Phys. Lett. A 375 1352

    [11]

    Wu L J, Han Y, Gong W J, Tan T Y 2011 Acta Phys. Sin. 60 107303 (in Chinese) [吴丽君, 韩宇, 公卫江, 谭天亚 2011 物理学报 60 107303]

    [12]

    Zianni X 2007 Phy. Rev. B 75 045344

    [13]

    Wang R Q, Sheng L, Shen R, Wang B, Xing D Y 2010 Phys. Rev. Lett. 105 057202

    [14]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778

    [15]

    Hatami M, Bauer G E W, Zhang Q, Kelly P J 2007 Phys. Rev. Lett. 99 066603

    [16]

    Chen C Y, Lin D L, Jin P W, Zhang S Q 1994 Phys. Rev. B 49 13680

    [17]

    Luo K, Wang F Q, Liang R S, Ren Z Z 2014 Chin. Phys. B 23 107103

    [18]

    Zhang A M, Zhang Q M 2013 Chin. Phys. B 22 087103

    [19]

    Dmitriy V, Melnikov, Beall Fowler W 2001 Phy. Rev. B 63 165302

    [20]

    Weig E M, Blick R H, Brandes T, Kirschbaum J, Wegscheider W, Bichler M, Kotthaus J P 2004 Phy. Rev. Lett. 92 46804

    [21]

    Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P, McEuen P L 2000 Nature 40 757

    [22]

    Li J J, Zhu K D 2009 Appl. Phys. Lett. 94 063116

    [23]

    Akiko U, Mikio E 2006 Phys. Rev. B 73 235353

    [24]

    Kuo D M T, Chang Y C 2002 Phys. Rev. B 66 085311

    [25]

    Zhu J X, Balatsky A V 2003 Phys. Rev. B 67 165326

    [26]

    Liu Y S, Chen H, Fan X H, Yang X F 2006 Phys. Rev. B 73 115310

    [27]

    Song J T, Sun Q F, Jiang H, Xie X C 2008 Phys. Rev. B 77 035309

    [28]

    Marcos H Degani, Gil A Farias 1990 Phys. Rev. B 42 11950

    [29]

    Roca E, Trallero-Giner C, Gardona M 1994 Phys. Rev. B 49 13704

    [30]

    Kazunori O, Koji A, Mistsuru M 1999 Phys. Rev. B 59 110850

    [31]

    Chen Z Z, L R, Zhu B F 2005 Phy. Rev. B 71 165324

    [32]

    Stephanie M R, Matti M 2002 Rev. Mod. Phys. 74 1283

    [33]

    Van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1

    [34]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217

    [35]

    Melniko D V, Beall F W 2001 Phys. Rev. B 64 245320

  • [1]

    Dubi Y, Ventra M D 2011 Rev. Mod. Phys. 83 131

    [2]

    Agrait N, Untiedt C, Bollinger G R, Vieira S 2002 Phys. Rev. Lett. 88 216803

    [3]

    Appleyard N, Nicholls J T, Pepper M, Tribe W R, Simmons M Y, Ritchie D A 2000 Phys. Rev. B 62 16275

    [4]

    Kubala B, König J, Pekola J 2008 Phys. Rev. Lett. 100 066801

    [5]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229

    [6]

    Kim T S, Hershfield S 2002 Phys. Rev. Lett. 88 136601

    [7]

    Reddy P, Jang S Y, Segalman R A, Majumdar A 2007 Science 315 1568

    [8]

    Kuo D M T, Chang Y C 2010 Phys. Rev. B 81 205321

    [9]

    Chen X S, Buhmaim H, Molenkamp L W 2000 Phys. Rev. B 61 16801

    [10]

    Chi F, Zheng J, Lu X D, Zhang K C 2011 Phys. Lett. A 375 1352

    [11]

    Wu L J, Han Y, Gong W J, Tan T Y 2011 Acta Phys. Sin. 60 107303 (in Chinese) [吴丽君, 韩宇, 公卫江, 谭天亚 2011 物理学报 60 107303]

    [12]

    Zianni X 2007 Phy. Rev. B 75 045344

    [13]

    Wang R Q, Sheng L, Shen R, Wang B, Xing D Y 2010 Phys. Rev. Lett. 105 057202

    [14]

    Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S, Saitoh E 2008 Nature 455 778

    [15]

    Hatami M, Bauer G E W, Zhang Q, Kelly P J 2007 Phys. Rev. Lett. 99 066603

    [16]

    Chen C Y, Lin D L, Jin P W, Zhang S Q 1994 Phys. Rev. B 49 13680

    [17]

    Luo K, Wang F Q, Liang R S, Ren Z Z 2014 Chin. Phys. B 23 107103

    [18]

    Zhang A M, Zhang Q M 2013 Chin. Phys. B 22 087103

    [19]

    Dmitriy V, Melnikov, Beall Fowler W 2001 Phy. Rev. B 63 165302

    [20]

    Weig E M, Blick R H, Brandes T, Kirschbaum J, Wegscheider W, Bichler M, Kotthaus J P 2004 Phy. Rev. Lett. 92 46804

    [21]

    Park H, Park J, Lim A K L, Anderson E H, Alivisatos A P, McEuen P L 2000 Nature 40 757

    [22]

    Li J J, Zhu K D 2009 Appl. Phys. Lett. 94 063116

    [23]

    Akiko U, Mikio E 2006 Phys. Rev. B 73 235353

    [24]

    Kuo D M T, Chang Y C 2002 Phys. Rev. B 66 085311

    [25]

    Zhu J X, Balatsky A V 2003 Phys. Rev. B 67 165326

    [26]

    Liu Y S, Chen H, Fan X H, Yang X F 2006 Phys. Rev. B 73 115310

    [27]

    Song J T, Sun Q F, Jiang H, Xie X C 2008 Phys. Rev. B 77 035309

    [28]

    Marcos H Degani, Gil A Farias 1990 Phys. Rev. B 42 11950

    [29]

    Roca E, Trallero-Giner C, Gardona M 1994 Phys. Rev. B 49 13704

    [30]

    Kazunori O, Koji A, Mistsuru M 1999 Phys. Rev. B 59 110850

    [31]

    Chen Z Z, L R, Zhu B F 2005 Phy. Rev. B 71 165324

    [32]

    Stephanie M R, Matti M 2002 Rev. Mod. Phys. 74 1283

    [33]

    Van der Wiel W G, De Franceschi S, Elzerman J M, Fujisawa T, Tarucha S, Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1

    [34]

    Hanson R, Kouwenhoven L P, Petta J R, Tarucha S, Vandersypen L M K 2007 Rev. Mod. Phys. 79 1217

    [35]

    Melniko D V, Beall F W 2001 Phys. Rev. B 64 245320

计量
  • 文章访问数:  2197
  • PDF下载量:  325
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-18
  • 修回日期:  2014-10-29
  • 刊出日期:  2015-04-05

电子-声子相互作用对平行双量子点体系热电效应的影响

  • 1. 东北大学, 理学院物理系, 沈阳 110819
    基金项目: 

    中央高校基本科研业务费专项资金(批准号: N130505001)和辽宁省教育厅科学研究一般项目(批准号: L2014099)资助的课题.

摘要: 量子点体系是一种典型的低维体系, 该体系的独特物理特性有利于提高热电转换效率. 本文采用非平衡态格林函数方法, 选择平行双量子点结构, 详细讨论了电子-声子相互作用对该体系的电导、热电功率、热电优值以及热导等热电效应相关参数的影响, 全面描述了电子-声子相互作用对该结构中热电效应的影响. 理论计算结果表明, 在低温情况下, 该体系中的法诺干涉能够有效增强热电效应, 而电子-声子相互作用通过破坏法诺干涉而在一定程度上抑制电导以及热导过程. 然而, 电子-声子相互作用不会显著地影响热电功率的幅值, 并且热电优值的极值几乎不会改变, 因此在低温条件下电子-声子相互作用并不是破坏量子点体系热电效应的必要条件. 本文的结果将有利于澄清电子-声子相互作用对量子点体系热电效应的影响.

English Abstract

参考文献 (35)

目录

    /

    返回文章
    返回