搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备

郭飞 杜红亮 屈绍波 夏颂 徐卓 赵建峰 张红梅

引用本文:
Citation:

基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备

郭飞, 杜红亮, 屈绍波, 夏颂, 徐卓, 赵建峰, 张红梅

Design and fabrication of a broadband metamaterial absorber based on a dielectric and magnetic hybrid substrate

Guo Fei, Du Hong-Liang, Qu Shao-Bo, Xia Song, Xu Zhuo, Zhao Jian-Feng, Zhang Hong-Mei
PDF
导出引用
  • 本文设计了一种基于磁/电介质混合型基体的宽带超材料吸波体, 吸波体基本单元由电阻膜、磁/电介质混合型基体以及金属背板组成. 采用时域有限差分法对超材料吸波体吸波性能进行了仿真, 使用遗传算法优化了反射率小于-10 dB的带宽. 仿真结果表明, 当超材料吸波体厚度为2.5 mm时, 在7.8–18 GHz频率范围内的反射率小于-10 dB, 具有厚度薄、宽带、极化不敏感等优点. 通过等效电路模型对其工作机理进行了分析与讨论. 最后制备样品进行测试, 测试结果与仿真结果一致.
    In this paper, a broadband metamaterial absorber is designed based on a hybrid substrate consisting of the dielectric and magnetic materials. The absorber is composed of the resistance film, dielectric layer, magnetic layer, and metal backboard. Numerical simulation of the absorbing properties is performed by means of the finite-difference time-domain method, and the bandwidth of the reflectivity below -10 dB is optimized by the genetic algorithm. Simulated results indicate that a bandwidth of reflectivity below -10 dB can be achieved over the frequency range from 7.8 to 18 GHz when the thickness of the absorber is only 2.5 mm. The proposed metamaterial absorber has many advantages, such as thin thickness, broadband, and polarization insensitivity. The operation mechanism of the absorber has also been analyzed and discussed within the model of equivalent circuit. In the end, an absorber sample is fabricated based on the design. It is found that the experimental result is well consistent with the design requirements.
    • 基金项目: 国家自然科学基金(批准号: 61331005)、中国博士后科学基金(批准号: 2013M532131)和陕西省基础研究计划(批准号: 2013JM6005)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61331005), the National Science Foundation for Post-doctoral Scientist of China (Grant No. 2013M532131), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2013JM6005).
    [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Pang Y Q, Cheng H F, Zhou Y J, Wang J 2013 J. Appl. Phys. 113 114902

    [3]

    Yang Y, Yang Y, Xiao W, Ding J 2014 J. Appl. Phys. 115 17A521

    [4]

    Wang GD, Liu MH, Hu XW, Kong LH, Cheng LL, Chen ZQ 2014 Chin. Phys. B 23 017802

    [5]

    Tsuda Y, Yasuzumi T, Hashimoto O 2011 IEEE Trans. Antennas Propag. 10 892

    [6]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese) [程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [7]

    Pang Y Q, Cheng H Y, Zhou Y J, Li Z G, Wang J 2012 Opt. Express 20 12515

    [8]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 Opt. Express 20 4675

    [9]

    Li H, Dibakar R C, Suchitra R, Matthew T. R, Luo, S N, Antoinette J T, Chen H T 2012 Opt. Letters 37 154

    [10]

    Singh P K, Korolev K A, Afsar M A, Sonkusale S 2011 Appl. Phys. Lett. 99 264101

    [11]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [12]

    Tuong P V, Park J W, Rhee J Y, Kim W, Jang W H, Cheong H, Lee Y P 2013 Appl. Phys. Lett. 102 081122

    [13]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 064508

    [14]

    Huang X J, Yang H L, Yu S Q, Wang J X, Li M H, Ye Q W 2013 J. Appl. Phys. 113 213516

    [15]

    Yang GH, LiuXX, Lv YL, Fu JH, Wu Q, Gu X M 2014 J. Appl. Phys. 115 17E523

    [16]

    Yoo M, Lim S 2014 IEEE Trans. Antennas Propag. 62 2652

    [17]

    Kazantsev Y N, Lopatin A V, Kazantseva N E, Shatrov A D, Mal’tsev V P, Vilcáková J, Sáha P 2010 IEEE Trans. Antennas Propag. 58 1227

    [18]

    Chen H Y, Zhang H B, Deng L H J 2010 IEEE Trans. Antennas Propag. 9 899

    [19]

    Han M G, Tang W, Chen W B, Zhou H, Deng L J 2010 J. Appl. Phys. 107 09A958

    [20]

    Liu J R, Itoh M, Terada M, Horikawa T, Machida K I 2007 Appl. Phys. Lett. 91 093101

    [21]

    Zhang X F, Dong X F, Huang H, Liu H Y, Wang W N, Zhu X G, Lv B, Lei J P, Lee C G 2006 Appl. Phys. Lett. 89 053115

    [22]

    Yang Y, Yang Y, Xiao W, Ding J 2014 J. Appl. Phys. 115 17A521

    [23]

    Kazemzadeh A, KarlssonA 2010 IEEE Trans. Antennas Propag. 58 3310

  • [1]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402

    [2]

    Pang Y Q, Cheng H F, Zhou Y J, Wang J 2013 J. Appl. Phys. 113 114902

    [3]

    Yang Y, Yang Y, Xiao W, Ding J 2014 J. Appl. Phys. 115 17A521

    [4]

    Wang GD, Liu MH, Hu XW, Kong LH, Cheng LL, Chen ZQ 2014 Chin. Phys. B 23 017802

    [5]

    Tsuda Y, Yasuzumi T, Hashimoto O 2011 IEEE Trans. Antennas Propag. 10 892

    [6]

    Cheng Y Z, Nie Y, Gong R Z, Zheng D H, Fan Y N, Xiong X, Wang X 2012 Acta Phys. Sin. 61 134101 (in Chinese) [程用志, 聂彦, 龚荣洲, 郑栋浩, 范跃农, 熊炫, 王鲜 2012 物理学报 61 134101]

    [7]

    Pang Y Q, Cheng H Y, Zhou Y J, Li Z G, Wang J 2012 Opt. Express 20 12515

    [8]

    Sun L K, Cheng H F, Zhou Y J, Wang J 2012 Opt. Express 20 4675

    [9]

    Li H, Dibakar R C, Suchitra R, Matthew T. R, Luo, S N, Antoinette J T, Chen H T 2012 Opt. Letters 37 154

    [10]

    Singh P K, Korolev K A, Afsar M A, Sonkusale S 2011 Appl. Phys. Lett. 99 264101

    [11]

    Lu L, Qu S B, Xia S, Xu Z, Ma H, Wang J F, Yu F 2013 Acta Phys. Sin. 62 013701 (in Chinese) [鲁磊, 屈绍波, 夏颂, 徐卓, 马华, 王甲富, 余斐 2013 物理学报 62 013701]

    [12]

    Tuong P V, Park J W, Rhee J Y, Kim W, Jang W H, Cheong H, Lee Y P 2013 Appl. Phys. Lett. 102 081122

    [13]

    Bhattacharyya S, Srivastava K V 2014 J. Appl. Phys. 115 064508

    [14]

    Huang X J, Yang H L, Yu S Q, Wang J X, Li M H, Ye Q W 2013 J. Appl. Phys. 113 213516

    [15]

    Yang GH, LiuXX, Lv YL, Fu JH, Wu Q, Gu X M 2014 J. Appl. Phys. 115 17E523

    [16]

    Yoo M, Lim S 2014 IEEE Trans. Antennas Propag. 62 2652

    [17]

    Kazantsev Y N, Lopatin A V, Kazantseva N E, Shatrov A D, Mal’tsev V P, Vilcáková J, Sáha P 2010 IEEE Trans. Antennas Propag. 58 1227

    [18]

    Chen H Y, Zhang H B, Deng L H J 2010 IEEE Trans. Antennas Propag. 9 899

    [19]

    Han M G, Tang W, Chen W B, Zhou H, Deng L J 2010 J. Appl. Phys. 107 09A958

    [20]

    Liu J R, Itoh M, Terada M, Horikawa T, Machida K I 2007 Appl. Phys. Lett. 91 093101

    [21]

    Zhang X F, Dong X F, Huang H, Liu H Y, Wang W N, Zhu X G, Lv B, Lei J P, Lee C G 2006 Appl. Phys. Lett. 89 053115

    [22]

    Yang Y, Yang Y, Xiao W, Ding J 2014 J. Appl. Phys. 115 17A521

    [23]

    Kazemzadeh A, KarlssonA 2010 IEEE Trans. Antennas Propag. 58 3310

  • [1] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2022, 71(3): 034101. doi: 10.7498/aps.71.20211254
    [2] 高喜, 唐李光. 基于双层超表面的宽带、高效透射型轨道角动量发生器. 物理学报, 2021, 70(3): 038101. doi: 10.7498/aps.70.20200975
    [3] 冯奎胜, 李娜, 李桐. 有源器件混合集成的超薄超宽带可调雷达吸波体. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211254
    [4] 周璐, 赵国忠, 李晓楠. 基于双开口谐振环超表面的宽带太赫兹涡旋光束产生. 物理学报, 2019, 68(10): 108701. doi: 10.7498/aps.68.20182147
    [5] 高强, 王晓华, 王秉中. 基于宽带立体超透镜的远场超分辨率成像. 物理学报, 2018, 67(9): 094101. doi: 10.7498/aps.67.20172608
    [6] 李唐景, 梁建刚, 李海鹏, 牛雪彬, 刘亚峤. 基于单层线-圆极化转换聚焦超表面的宽带高增益圆极化天线设计. 物理学报, 2017, 66(6): 064102. doi: 10.7498/aps.66.064102
    [7] 宁仁霞, 鲍婕, 焦铮. 基于石墨烯超表面的宽带电磁诱导透明研究. 物理学报, 2017, 66(10): 100202. doi: 10.7498/aps.66.100202
    [8] 李唐景, 梁建刚, 李海鹏. 基于单层反射超表面的宽带圆极化高增益天线设计. 物理学报, 2016, 65(10): 104101. doi: 10.7498/aps.65.104101
    [9] 侯海生, 王光明, 李海鹏, 蔡通, 郭文龙. 超薄宽带平面聚焦超表面及其在高增益天线中的应用. 物理学报, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] 韩江枫, 曹祥玉, 高军, 李思佳, 张晨. 一种基于超材料的宽带、反射型90极化旋转体设计. 物理学报, 2016, 65(4): 044201. doi: 10.7498/aps.65.044201
    [11] 李勇峰, 张介秋, 屈绍波, 王甲富, 吴翔, 徐卓, 张安学. 二维宽带相位梯度超表面设计及实验验证. 物理学报, 2015, 64(9): 094101. doi: 10.7498/aps.64.094101
    [12] 鲁磊, 屈绍波, 施宏宇, 张安学, 夏颂, 徐卓, 张介秋. 宽带透射吸收极化无关超材料吸波体. 物理学报, 2014, 63(2): 028103. doi: 10.7498/aps.63.028103
    [13] 李思佳, 曹祥玉, 高军, 郑秋容, 赵一, 杨群. 低雷达散射截面的超薄宽带完美吸波屏设计研究. 物理学报, 2013, 62(19): 194101. doi: 10.7498/aps.62.194101
    [14] 鲁磊, 屈绍波, 苏兮, 尚耀波, 张介秋, 柏鹏. 极薄宽角度平面超材料吸波体仿真与实验验证. 物理学报, 2013, 62(20): 208103. doi: 10.7498/aps.62.208103
    [15] 杨欢欢, 曹祥玉, 高军, 刘涛, 李思佳, 赵一, 袁子东, 张浩. 基于电磁谐振分离的宽带低雷达截面超材料吸波体. 物理学报, 2013, 62(21): 214101. doi: 10.7498/aps.62.214101
    [16] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [17] 程用志, 王莹, 聂彦, 郑栋浩, 龚荣洲, 熊炫, 王鲜. 基于电阻型频率选择表面的低频宽带超材料吸波体的设计. 物理学报, 2012, 61(13): 134102. doi: 10.7498/aps.61.134102
    [18] 顾超, 屈绍波, 裴志斌, 徐卓, 柏鹏, 彭卫东, 林宝勤. 基于磁谐振器加载的宽频带超材料吸波体的设计. 物理学报, 2011, 60(8): 087801. doi: 10.7498/aps.60.087801
    [19] 顾超, 屈绍波, 裴志斌, 徐卓, 马华, 林宝勤, 柏鹏, 彭卫东. 一种极化不敏感和双面吸波的手性超材料吸波体. 物理学报, 2011, 60(10): 107801. doi: 10.7498/aps.60.107801
    [20] 张庆斌, 兰鹏飞, 洪伟毅, 廖青, 杨振宇, 陆培祥. 控制场对宽带超连续谱产生的影响. 物理学报, 2009, 58(7): 4908-4913. doi: 10.7498/aps.58.4908
计量
  • 文章访问数:  3534
  • PDF下载量:  548
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-28
  • 修回日期:  2014-11-13
  • 刊出日期:  2015-04-05

基于磁/电介质混合型基体的宽带超材料吸波体的设计与制备

  • 1. 空军工程大学理学院, 西安 710051;
  • 2. 西安交通大学电子陶瓷与器件教育部重点实验室, 西安 710049
    基金项目: 国家自然科学基金(批准号: 61331005)、中国博士后科学基金(批准号: 2013M532131)和陕西省基础研究计划(批准号: 2013JM6005)资助的课题.

摘要: 本文设计了一种基于磁/电介质混合型基体的宽带超材料吸波体, 吸波体基本单元由电阻膜、磁/电介质混合型基体以及金属背板组成. 采用时域有限差分法对超材料吸波体吸波性能进行了仿真, 使用遗传算法优化了反射率小于-10 dB的带宽. 仿真结果表明, 当超材料吸波体厚度为2.5 mm时, 在7.8–18 GHz频率范围内的反射率小于-10 dB, 具有厚度薄、宽带、极化不敏感等优点. 通过等效电路模型对其工作机理进行了分析与讨论. 最后制备样品进行测试, 测试结果与仿真结果一致.

English Abstract

参考文献 (23)

目录

    /

    返回文章
    返回