搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于蒙特卡洛方法的钛氧化物忆阻器辐射损伤研究

刘海军 田晓波 李清江 孙兆林 刁节涛

引用本文:
Citation:

基于蒙特卡洛方法的钛氧化物忆阻器辐射损伤研究

刘海军, 田晓波, 李清江, 孙兆林, 刁节涛

Research on radiation damage in titanium oxide memristors by Monte Carlo method

Liu Hai-Jun, Tian Xiao-Bo, Li Qing-Jiang, Sun Zhao-Lin, Diao Jie-Tao
PDF
导出引用
  • 纳米钛氧化物忆阻器有望成为新一代阻性存储器基本单元并应用于辐射环境中的航天器控制及数据存储系统. 辐射能量, 强度, 方向, 持续时间等要素发生改变均可能对钛氧化物忆阻器受到的辐射损伤构成影响, 然而, 目前尚无相关具体研究. 基于以蒙特卡洛方法为核心的SRIM仿真, 本文针对宇宙射线主体组成部分——质子及 α射线定量研究了各个辐射要素与钛氧化物忆阻器辐射损伤的关联, 依据器件实测数据研究了辐射要素与导通阻抗, 截止阻抗及氧空缺迁移率等忆阻器主要参数的关系, 进一步利用SPICE仿真讨论了辐射对杂质漂移与隧道势垒共存特性的影响, 从而为评估及降低钛氧化物忆阻器辐射损伤, 提高器件应用于辐射环境的可靠性提供依据.
    Nano titanium oxide memristor is expected to be the basic cell of a new generation of resistive memory and applied in the control and data storage systems of spacecrafts that work in a radiation environment. The changes of radiation key factors, such as energy, intensity, direction, and duration etc. probably have an influence on the radiation damage of the titanium oxide memristor. However, there has been no relatively detailed research of it. Based on the SRIM simulation, with the Monte Carlo method used as its core, the main part of cosmic rays——proton and alpha rays and the relevance between the key factors and radiation damage in titanium oxide memristor are quantitatively studied. According to the experimental data, the relations between key factors and R_{ON}, R_{OFF}, the mobility of oxygen vacancies are analyzed. We find that the mobility of oxygen vacancies increases abruptly when the ratio between oxygen vacancies and titanium oxide molecules is greater than 0.16. Moreover, compared with proton radiation, the alpha particle radiation going into the active region in titanium oxide memristor, especially at an oblique incidence angle may cause a greater damage to the device and should be strictly avoided, and the radiation damage increases as the intensity and duration of the radiation are raised. SPICE simulations are further utilized to show the influence of radiation on the characteristics of the coexistence of dopant drift and the tunnel barrier. We also find that the titanium oxide memristor device will gradually turn into a normal resistor with a low resistance and lose its charge-memory ability after persistent radiations. This work provides support for evaluating and reducing radiation damage for titanium oxide memristors, so as to improve the reliability of the device in radiation environment.
    • 基金项目: 国家自然科学基金(批准号: 61471377, F011801)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61471377, F011801).
    [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Shen W C, Tseng Y H, Chih Y D, Lin C J 2011 IEEE Electron Device Lett. 32 1650

    [4]

    Ho Y, Huang G M, Li P 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 58 724

    [5]

    Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2011 IEEE Trans. Nanotechnol. 10 1066

    [6]

    Pershin Y V, fontaine S L, Ventra M D 2009 Phys. Rev. E 80 021926

    [7]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 237

    [8]

    Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140

    [9]

    Buscarino A, Fortuna L, Frasca M, Gambuzza L V 2012 Chaos 22 023136

    [10]

    Liu H J, Li Z W, Bu K, Sun Z L, Nie H S 2014 Chin. Phys. B 23 048401

    [11]

    Wang F Z, Helian N, Wu S, Yang X, Guo Y, Lim G, Rashid M M 2012 J. Appl. Phys. 111 07E317

    [12]

    Prodromakis T, Boon P P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron Devices 58 3099

    [13]

    Xia Q F, Pickett M D, Yang J J, Li X, Wu W, Ribeiro G M, Williams R S 2011 Adv. Funct. Mater. 21 2660

    [14]

    Wang T S, Zhang R D, Guan Z, Ba K, Zu Y X 2014 Acta Phys. Sin. 63 178101 (in Chinese) [王天舒, 张瑞德, 关哲, 巴柯, 俎云霄 2014 物理学报 63 178101]

    [15]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [16]

    Vujisic M, Stankovic K, Marjanovic N, Osmokrovic P 2010 IEEE Trans. Nucl. Sci. 57 1798

    [17]

    Tong W M, Yang J J, Kuekes P J, Stewart D R, Williams R S, DeIonno E, King E E, Witczak S C, Looper M D, Osborn J V 2010 IEEE Trans. Nucl. Sci. 57 1640

    [18]

    Hughart D R, Lohn A J, Mickel P R, Dalton S M, Dodd P E, Shaneyfelt M R, Silva A I, Bielejec E, Vizkelethy G, Marshall M T, McLain M L, Marinella M J 2013 IEEE Trans. Nucl. Sci. 60 4512

    [19]

    Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 物理学报 63 086101]

    [20]

    Nadine G H, Hamadani B, Dunlap B, Suehle J, Richter C, Hacker C, Gundlach D 2009 IEEE Electron Device Lett. 30 706

    [21]

    Torrezan A C, Strachan J P, Ribeiro G M, Williams R S 2011 Nanotechnology 22 485203

    [22]

    Michelakis K, Prodromakis T, Toumazou C 2010 Micro & Nano Letters 5 91

    [23]

    Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [24]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [25]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [26]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [27]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [28]

    Abdalla H, Pickett M D International Symposium on Circuits and Systems May 15-18, 2011 Rio de Janeiro, Brazil, p1832

    [29]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [30]

    Tian X B, Xu H 2014 Chin. Phys. B 23 068401

    [31]

    Kim M H, Baek S B, Paik U 1998 Journal of the Korean Physical Society 32 1127

    [32]

    Minnear W P, Bradt R C 1980 J. Amer. Ceramic Soc. 63 485

    [33]

    Ju Y F, Wang M H, Wang Y L, Wang S H, Fu C F 2013 Advances in Condensed Matter Physics 2013 365475

  • [1]

    Chua L O 1971 IEEE Trans. Circ. Th. 18 507

    [2]

    Strukov D B, Snider G S, Stewart D R, Williams R S 2008 Nature 453 80

    [3]

    Shen W C, Tseng Y H, Chih Y D, Lin C J 2011 IEEE Electron Device Lett. 32 1650

    [4]

    Ho Y, Huang G M, Li P 2011 IEEE Trans. Circuits Syst. I, Reg. Papers 58 724

    [5]

    Cantley K D, Subramaniam A, Stiegler H J, Chapman R A, Vogel E M 2011 IEEE Trans. Nanotechnol. 10 1066

    [6]

    Pershin Y V, fontaine S L, Ventra M D 2009 Phys. Rev. E 80 021926

    [7]

    Bao B C, Liu Z, Xu J P 2010 Electron. Lett. 46 237

    [8]

    Sun J W, Shen Y, Yin Q, Xu C J 2013 Chaos 23 013140

    [9]

    Buscarino A, Fortuna L, Frasca M, Gambuzza L V 2012 Chaos 22 023136

    [10]

    Liu H J, Li Z W, Bu K, Sun Z L, Nie H S 2014 Chin. Phys. B 23 048401

    [11]

    Wang F Z, Helian N, Wu S, Yang X, Guo Y, Lim G, Rashid M M 2012 J. Appl. Phys. 111 07E317

    [12]

    Prodromakis T, Boon P P, Papavassiliou C, Toumazou C 2011 IEEE Trans. Electron Devices 58 3099

    [13]

    Xia Q F, Pickett M D, Yang J J, Li X, Wu W, Ribeiro G M, Williams R S 2011 Adv. Funct. Mater. 21 2660

    [14]

    Wang T S, Zhang R D, Guan Z, Ba K, Zu Y X 2014 Acta Phys. Sin. 63 178101 (in Chinese) [王天舒, 张瑞德, 关哲, 巴柯, 俎云霄 2014 物理学报 63 178101]

    [15]

    Dong Z K, Duan S K, Hu X F, Wang L D 2014 Acta Phys. Sin. 63 128502 (in Chinese) [董哲康, 段书凯, 胡小方, 王丽丹 2014 物理学报 63 128502]

    [16]

    Vujisic M, Stankovic K, Marjanovic N, Osmokrovic P 2010 IEEE Trans. Nucl. Sci. 57 1798

    [17]

    Tong W M, Yang J J, Kuekes P J, Stewart D R, Williams R S, DeIonno E, King E E, Witczak S C, Looper M D, Osborn J V 2010 IEEE Trans. Nucl. Sci. 57 1640

    [18]

    Hughart D R, Lohn A J, Mickel P R, Dalton S M, Dodd P E, Shaneyfelt M R, Silva A I, Bielejec E, Vizkelethy G, Marshall M T, McLain M L, Marinella M J 2013 IEEE Trans. Nucl. Sci. 60 4512

    [19]

    Cong Z C, Yu X F, Cui J W, Zheng Q W, Guo Q, Sun J, Wang B, Ma W Y, Ma L Y, Zhou H 2014 Acta Phys. Sin. 63 086101 (in Chinese) [丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航 2014 物理学报 63 086101]

    [20]

    Nadine G H, Hamadani B, Dunlap B, Suehle J, Richter C, Hacker C, Gundlach D 2009 IEEE Electron Device Lett. 30 706

    [21]

    Torrezan A C, Strachan J P, Ribeiro G M, Williams R S 2011 Nanotechnology 22 485203

    [22]

    Michelakis K, Prodromakis T, Toumazou C 2010 Micro & Nano Letters 5 91

    [23]

    Driscoll T, Kim H T, Chae B G, Ventra M D, Basov D N 2009 Appl. Phys. Lett. 95 043503

    [24]

    Yang J J, Miao F, Pickett M D, Ohlberg D A A, Stewart D R, Lau C N, Williams R S 2009 Nanotechnology 20 215201

    [25]

    Yang J J, Pickett M D, Li X M, Ohlberg D A A, Stewart D R, Williams R S 2008 Nature Nanotech. 3 429

    [26]

    Pickett M D, Strukov D B, Borghetti J L, Yang J J, Snider G S, Stewart D R, Williams R S 2009 J. Appl. Phys. 106 074508

    [27]

    Huang D, Wu J J, Tang Y H 2013 Chin. Phys. B 22 038401

    [28]

    Abdalla H, Pickett M D International Symposium on Circuits and Systems May 15-18, 2011 Rio de Janeiro, Brazil, p1832

    [29]

    Tian X B, Xu H, Li Q J 2013 Chin. Phys. B 22 088502

    [30]

    Tian X B, Xu H 2014 Chin. Phys. B 23 068401

    [31]

    Kim M H, Baek S B, Paik U 1998 Journal of the Korean Physical Society 32 1127

    [32]

    Minnear W P, Bradt R C 1980 J. Amer. Ceramic Soc. 63 485

    [33]

    Ju Y F, Wang M H, Wang Y L, Wang S H, Fu C F 2013 Advances in Condensed Matter Physics 2013 365475

  • [1] 马武英, 姚志斌, 何宝平, 王祖军, 刘敏波, 刘静, 盛江坤, 董观涛, 薛院院. 65 nm互补金属氧化物半导体场效应和晶体管总剂量效应及损伤机制. 物理学报, 2018, 67(14): 146103. doi: 10.7498/aps.67.20172542
    [2] 丛忠超, 余学峰, 崔江维, 郑齐文, 郭旗, 孙静, 汪波, 马武英, 玛丽娅, 周航. 静态随机存储器总剂量辐射损伤的在线与离线测试方法. 物理学报, 2014, 63(8): 086101. doi: 10.7498/aps.63.086101
    [3] 马武英, 王志宽, 陆妩, 席善斌, 郭旗, 何承发, 王信, 刘默寒, 姜柯. 栅控横向PNP双极晶体管基极电流峰值展宽效应及电荷分离研究. 物理学报, 2014, 63(11): 116101. doi: 10.7498/aps.63.116101
    [4] 王玉珍, 马颖, 周益春. 外延压应变对BaTiO3铁电体抗辐射性能影响的分子动力学研究. 物理学报, 2014, 63(24): 246101. doi: 10.7498/aps.63.246101
    [5] 马武英, 陆妩, 郭旗, 何承发, 吴雪, 王信, 丛忠超, 汪波, 玛丽娅. 双极电压比较器电离辐射损伤及剂量率效应分析. 物理学报, 2014, 63(2): 026101. doi: 10.7498/aps.63.026101
    [6] 张兴尧, 郭旗, 陆妩, 张孝富, 郑齐文, 崔江维, 李豫东, 周东. 串口型铁电存储器总剂量辐射损伤效应和退火特性. 物理学报, 2013, 62(15): 156107. doi: 10.7498/aps.62.156107
    [7] 马国亮, 李兴冀, 刘海, 刘超铭, 杨剑群, 何世禹. 晶粒尺寸对1 MeV电子在金属Ni中能量沉积的影响. 物理学报, 2013, 62(9): 091401. doi: 10.7498/aps.62.091401
    [8] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究. 物理学报, 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [9] 吕玲, 张进成, 李亮, 马晓华, 曹艳荣, 郝跃. 3 MeV质子辐照对AlGaN/GaN高电子迁移率晶体管的影响. 物理学报, 2012, 61(5): 057202. doi: 10.7498/aps.61.057202
    [10] 林丽艳, 杜磊, 包军林, 何亮. 光电耦合器电离辐射损伤电流传输比1/f噪声表征. 物理学报, 2011, 60(4): 047202. doi: 10.7498/aps.60.047202
    [11] 高博, 余学峰, 任迪远, 李豫东, 崔江维, 李茂顺, 李明, 王义元. 静态存储器型现场可编程门阵列总剂量辐射损伤效应研究. 物理学报, 2011, 60(3): 036106. doi: 10.7498/aps.60.036106
    [12] 高博, 余学峰, 任迪远, 崔江维, 兰博, 李明, 王义元. p型金属氧化物半导体场效应晶体管低剂量率辐射损伤增强效应模型研究. 物理学报, 2011, 60(6): 068702. doi: 10.7498/aps.60.068702
    [13] 王义元, 陆妩, 任迪远, 郭旗, 余学峰, 何承发, 高博. 双极线性稳压器电离辐射剂量率效应及其损伤分析. 物理学报, 2011, 60(9): 096104. doi: 10.7498/aps.60.096104
    [14] 郑玉展, 陆妩, 任迪远, 王义元, 郭旗, 余学锋, 何承发. 不同发射极面积npn晶体管高低剂量率辐射损伤特性. 物理学报, 2009, 58(8): 5572-5577. doi: 10.7498/aps.58.5572
    [15] 周勋秀, 胡红波, 黄庆. 用羊八井ASγ实验数据寻找TeV能区的γ射线暴. 物理学报, 2009, 58(8): 5879-5885. doi: 10.7498/aps.58.5879
    [16] 范 隆, 郝 跃. 辐射感生应力弛豫对AlmGa1-mN/GaN HEMT电学特性的影响. 物理学报, 2007, 56(6): 3393-3399. doi: 10.7498/aps.56.3393
    [17] 蒙 康, 姜森林, 侯利娜, 李 蝉, 王 坤, 丁志博, 姚淑德. Mg+注入对GaN晶体辐射损伤的研究. 物理学报, 2006, 55(5): 2476-2481. doi: 10.7498/aps.55.2476
    [18] 何宝平, 陈 伟, 王桂珍. CMOS器件60Co γ射线、电子和质子电离辐射损伤比较. 物理学报, 2006, 55(7): 3546-3551. doi: 10.7498/aps.55.3546
    [19] 何宝平, 郭红霞, 龚建成, 王桂珍, 罗尹虹, 李永宏. 浮栅ROM集成电路空间低剂量率辐射失效时间预估. 物理学报, 2004, 53(9): 3125-3129. doi: 10.7498/aps.53.3125
    [20] 牟维兵, 陈盘训. 用蒙特卡罗法计算X射线在重金属界面的剂量增强系数. 物理学报, 2001, 50(2): 189-192. doi: 10.7498/aps.50.189
计量
  • 文章访问数:  3413
  • PDF下载量:  389
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-20
  • 修回日期:  2014-11-13
  • 刊出日期:  2015-04-05

基于蒙特卡洛方法的钛氧化物忆阻器辐射损伤研究

  • 1. 国防科学技术大学电子科学与工程学院, 长沙 410073
    基金项目: 国家自然科学基金(批准号: 61471377, F011801)资助的课题.

摘要: 纳米钛氧化物忆阻器有望成为新一代阻性存储器基本单元并应用于辐射环境中的航天器控制及数据存储系统. 辐射能量, 强度, 方向, 持续时间等要素发生改变均可能对钛氧化物忆阻器受到的辐射损伤构成影响, 然而, 目前尚无相关具体研究. 基于以蒙特卡洛方法为核心的SRIM仿真, 本文针对宇宙射线主体组成部分——质子及 α射线定量研究了各个辐射要素与钛氧化物忆阻器辐射损伤的关联, 依据器件实测数据研究了辐射要素与导通阻抗, 截止阻抗及氧空缺迁移率等忆阻器主要参数的关系, 进一步利用SPICE仿真讨论了辐射对杂质漂移与隧道势垒共存特性的影响, 从而为评估及降低钛氧化物忆阻器辐射损伤, 提高器件应用于辐射环境的可靠性提供依据.

English Abstract

参考文献 (33)

目录

    /

    返回文章
    返回