搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镓原子的Stark能级结构

董慧杰 王新宇 李昌勇 贾锁堂

引用本文:
Citation:

镓原子的Stark能级结构

董慧杰, 王新宇, 李昌勇, 贾锁堂

Stark structure of atomic gallium

Dong Hui-Jie, Wang Xin-Yu, Li Chang-Yong, Jia Suo-Tang
PDF
导出引用
  • 里德堡原子的Stark效应在偶极偶极相互作用、量子信息和量子调控等方面具有潜在的应用前景. 本文首先根据零场时镓原子的能级数据, 通过非线性拟合方法获得了镓原子各态的量子亏损, 仔细分析了量子亏损随主量子数的变化特征; 然后利用Numerov算法计算了镓原子的径向波函数; 最后采用矩阵对角化方法, 数值计算了镓原子高里德堡态在场强范围F=0-3000 V·cm- 1时n=7和n=18附近的Stark能级结构. 结果显示在主量子数n=7多重态以上的能级结构中, (n+1)P态的能级接近并大于nD态的能级, 在n=7多重态以下的能级结构中, (n+1)P态的能级接近并小于nD态的能级. 这一现象不同于通常的碱金属原子的Stark结构, 论文对该现象及其他Stark能级结构特征进行了详细分析, 为相关研究工作提供了重要参考价值.
    The Stark effect in Rydberg atoms has potential applications in the areas of dipole-dipole interaction, quantum information, quantum control, and so on. Many reflevant theoretical calculations and experimental studies about the Stark effect of alkali metal and alkali earth metals have been reported, but the other atom’s Stark effect is studied still relatively less. Our goal in this paper is to reflearch the third main group atom’s Stark effect in a large electric field. First, according to the level data of gallium atom in zero-field, we obtain the quantum defects from the modified Ritz formula in each state by using a nonlinear least-squares-fitting algorithm. The quantum defects as a function of the principal quantum number are analyzed in detail. Influences of both the core polarization and the penetrating valence electron on the quantum defect are discussed according to the fitting results. Then we use the Numerov algorithm to calculate the radial wave functions of atomic gallium. Finally, the Stark structures of Rydberg states around n=7 and n=18 are numerically calculated by matrix diagonalization. Results show that at the levels above n=7 manifold states, (n+1)P is higher than nD state, and it is in contrast to the levels below the n=7 manifold states. This phenomenon is different from the usual Stark structure of alkali metal atoms, the level’s order of which does not change with the principal quantum number. The Stark levels with the identical |m| anti-cross each other, and those with different |m| cross. Our results give an important reflerence for related reflearches, and are of great significance for insight into the atomic structure and the interaction between the atomic core and the highly excited electrons.
    • 基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 61378039, 61078013, 61178009, 11274209)、教育部长江学者和创新研究团队发展计划(批准号: IRT13076)、国家自然科学基金国家基础科学人才培养基金(批准号: J1210036)和山西省自然科学基金(批准号: 2012011003-2)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2012CB921603), the National Natural Science Foundation of China (Grant Nos. 61378039, 61078013, 61178009, 11274209), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT13076), the Fund for Fostering Talents in Basic Science of the National Natural Science Foundation of China (Grant No. J1210036), and the Natural Science Foundation of Shanxi Province, China (Grant No. 2012011003-2).
    [1]

    Silverstone H J 1978 Phys. Rev. A 18 1853

    [2]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251

    [3]

    Hu Z F, Zhao H T, Zhou S K, Gong S S, Shan M S 2000 Chin. Phys. B 9 805

    [4]

    Wang L M, Zhang H, Li C Y, Zhao J M, Jia S T 2013 Acta Phys. Sin. 62 013201 (in Chinese) [王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂 2013 物理学报 62 013201]

    [5]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2405 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2405]

    [6]

    Singer K, Reetz-Lamour M, Amthor T, Folling S, Tscherneck M, Weidemuller M 2005 J. Phys. B 38 S321

    [7]

    Zhi M C, Dai C J, Li S B 2001 Chin. Phys. B 10 929

    [8]

    Yang H F, Gao W, Cheng H, Liu X J, Liu H P 2013 Chin. Phys. B 22 013202

    [9]

    Kampschulte T, Schulze J, Luggenholscher D, Bowden M, Czarnetzki U 2007 New J. Phys. 9 18

    [10]

    Li C Y, Hao T, Zhang H, Zhu X B, Tao G Q, Zhang L J, Zhao J M, Jia S T 2012 J. Phys. Soc. Jpn. 81 044302

    [11]

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202 (in Chinese) [李昌勇, 张临杰, 赵建明, 贾锁堂 2012 物理学报 61 163202]

    [12]

    Dong H J, Wang T, Li C Y, Zhao J M, Zhang L J 2013 Chin. Phys. B 22 073201

    [13]

    Dong H J, Huang K S, Zhao J M, Zhang L J, Jia S T 2014 Chin. Phys. B 23 093202

    [14]

    Tao G Q, Li C Y, Zhang L J, Zhao J M, Jia S T 2009 Acta Sinica Quantum Optica 15 185 (in Chinese) [陶冠奇, 李昌勇, 张临杰, 赵建明, 贾锁堂 2009 量子光学学报 15 185]

    [15]

    Weber K H, Sansonnetti C J 1987 Phys. Rev. A 1987 35 4650

  • [1]

    Silverstone H J 1978 Phys. Rev. A 18 1853

    [2]

    Zimmerman M L, Littman M G, Kash M M, Kleppner D 1979 Phys. Rev. A 20 2251

    [3]

    Hu Z F, Zhao H T, Zhou S K, Gong S S, Shan M S 2000 Chin. Phys. B 9 805

    [4]

    Wang L M, Zhang H, Li C Y, Zhao J M, Jia S T 2013 Acta Phys. Sin. 62 013201 (in Chinese) [王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂 2013 物理学报 62 013201]

    [5]

    Zhu X B, Zhang H, Feng Z G, Zhang L J, Li C Y, Zhao J M, Jia S T 2010 Acta Phys. Sin. 59 2405 (in Chinese) [朱兴波, 张好, 冯志刚, 张临杰, 李昌勇, 赵建明, 贾锁堂 2010 物理学报 59 2405]

    [6]

    Singer K, Reetz-Lamour M, Amthor T, Folling S, Tscherneck M, Weidemuller M 2005 J. Phys. B 38 S321

    [7]

    Zhi M C, Dai C J, Li S B 2001 Chin. Phys. B 10 929

    [8]

    Yang H F, Gao W, Cheng H, Liu X J, Liu H P 2013 Chin. Phys. B 22 013202

    [9]

    Kampschulte T, Schulze J, Luggenholscher D, Bowden M, Czarnetzki U 2007 New J. Phys. 9 18

    [10]

    Li C Y, Hao T, Zhang H, Zhu X B, Tao G Q, Zhang L J, Zhao J M, Jia S T 2012 J. Phys. Soc. Jpn. 81 044302

    [11]

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202 (in Chinese) [李昌勇, 张临杰, 赵建明, 贾锁堂 2012 物理学报 61 163202]

    [12]

    Dong H J, Wang T, Li C Y, Zhao J M, Zhang L J 2013 Chin. Phys. B 22 073201

    [13]

    Dong H J, Huang K S, Zhao J M, Zhang L J, Jia S T 2014 Chin. Phys. B 23 093202

    [14]

    Tao G Q, Li C Y, Zhang L J, Zhao J M, Jia S T 2009 Acta Sinica Quantum Optica 15 185 (in Chinese) [陶冠奇, 李昌勇, 张临杰, 赵建明, 贾锁堂 2009 量子光学学报 15 185]

    [15]

    Weber K H, Sansonnetti C J 1987 Phys. Rev. A 1987 35 4650

  • [1] 林沂, 吴逢川, 毛瑞棋, 姚佳伟, 刘燚, 安强, 付云起. 三端口光纤耦合原子气室探头的开发及其微波数字通信应用. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220594
    [2] 高洁, 杭超. 里德堡原子中非厄米电磁诱导光栅引起的弱光孤子偏折及其操控. 物理学报, 2022, 71(13): 1-12. doi: 10.7498/aps.71.20220456
    [3] 白文杰, 严冬, 韩海燕, 华硕, 谷开慧. 三体里德堡超级原子的关联动力学研究. 物理学报, 2022, 71(1): 014202. doi: 10.7498/aps.71.20211284
    [4] 段春泱, 李娜, 赵岩, 李昌勇. 利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能. 物理学报, 2021, 70(5): 053301. doi: 10.7498/aps.70.20201273
    [5] 万建杰, 赵鑫婷, 李冀光, 董晨钟. Stark效应诱导的类氢离子2s1/2-1s1/2跃迁几率的理论研究. 物理学报, 2021, 70(17): 173201. doi: 10.7498/aps.70.20210181
    [6] 陈昌远, 孙国华, 王晓华, 孙东升, 尤源, 陆法林, 董世海. 刚性对称陀螺分子Stark效应的精确解. 物理学报, 2021, 70(18): 180301. doi: 10.7498/aps.70.20210214
    [7] 程刚, 曹渊, 刘锟, 曹亚南, 陈家金, 高晓明. 光声光谱检测装置中光声池的数值计算及优化. 物理学报, 2019, 68(7): 074202. doi: 10.7498/aps.68.20182084
    [8] 黄巍, 梁振涛, 杜炎雄, 颜辉, 朱诗亮. 基于里德堡原子的电场测量. 物理学报, 2015, 64(16): 160702. doi: 10.7498/aps.64.160702
    [9] 阮鹏, 谢冀江, 潘其坤, 张来明, 郭劲. 非链式脉冲DF化学激光器反应动力学模型. 物理学报, 2013, 62(9): 094208. doi: 10.7498/aps.62.094208
    [10] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [11] 李杰, 朱京平. 光波导短程透镜加工容限误差研究. 物理学报, 2012, 61(24): 244208. doi: 10.7498/aps.61.244208
    [12] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [13] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [14] 花金荣, 李莉, 向霞, 祖小涛. 熔石英亚表面杂质颗粒附近光场调制的三维模拟. 物理学报, 2011, 60(4): 044206. doi: 10.7498/aps.60.044206
    [15] 邵先军, 马跃, 李娅西, 张冠军. 低气压氙气介质阻挡放电的一维仿真研究. 物理学报, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [16] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究. 物理学报, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [17] 宋法伦, 张永辉, 向 飞, 常安碧. 强流电子束碰撞电离背景气体研究. 物理学报, 2008, 57(3): 1807-1812. doi: 10.7498/aps.57.1807
    [18] 张 敏, 班士良. 压力下应变异质结中施主杂质态的Stark效应. 物理学报, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [19] 马再如, 冯国英, 陈建国, 朱启华, 曾小明, 刘文兵, 周寿桓. 多个超短脉冲相干叠加构成窄带平顶长脉冲的研究. 物理学报, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  5308
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-09
  • 修回日期:  2014-12-16
  • 刊出日期:  2015-05-05

镓原子的Stark能级结构

  • 1. 量子光学和光量子器件国家重点实验室, 山西大学激光光谱研究所, 太原 030006
    基金项目: 国家重点基础研究发展计划(批准号: 2012CB921603)、国家自然科学基金(批准号: 61378039, 61078013, 61178009, 11274209)、教育部长江学者和创新研究团队发展计划(批准号: IRT13076)、国家自然科学基金国家基础科学人才培养基金(批准号: J1210036)和山西省自然科学基金(批准号: 2012011003-2)资助的课题.

摘要: 里德堡原子的Stark效应在偶极偶极相互作用、量子信息和量子调控等方面具有潜在的应用前景. 本文首先根据零场时镓原子的能级数据, 通过非线性拟合方法获得了镓原子各态的量子亏损, 仔细分析了量子亏损随主量子数的变化特征; 然后利用Numerov算法计算了镓原子的径向波函数; 最后采用矩阵对角化方法, 数值计算了镓原子高里德堡态在场强范围F=0-3000 V·cm- 1时n=7和n=18附近的Stark能级结构. 结果显示在主量子数n=7多重态以上的能级结构中, (n+1)P态的能级接近并大于nD态的能级, 在n=7多重态以下的能级结构中, (n+1)P态的能级接近并小于nD态的能级. 这一现象不同于通常的碱金属原子的Stark结构, 论文对该现象及其他Stark能级结构特征进行了详细分析, 为相关研究工作提供了重要参考价值.

English Abstract

参考文献 (15)

目录

    /

    返回文章
    返回