搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究

白玲 李大鸣 李彦卿 王志超 李杨杨

引用本文:
Citation:

基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究

白玲, 李大鸣, 李彦卿, 王志超, 李杨杨

Study on the droplet impact on hydrophobic surface in terms of van der Waals surface tension model

Bai Ling, Li Da-Ming, Li Yan-Qing, Wang Zhi-Chao, Li Yang-Yang
PDF
导出引用
  • 液滴撞击疏水壁面过程的研究在介观流体力学和微流体作用材料科学的研究中具有重要的理论意义和工程价值. 论文在SPH方法中引入范德瓦尔斯状态方程处理液滴表面张力, 考虑流体粒子之间远程吸引, 近程排斥的内部作用力, 提出了流体粒子与疏水壁面粒子间势能函数与表面张力相结合的作用模式. 通过模拟真空条件下两个静止的等体积液滴相互融合的过程, 验证了计算模式在模拟液滴的表面张力中的有效性. 采用该模式模拟的液滴撞击疏水壁面过程, 不仅能够有效地模拟液滴撞击壁面后的变形过程, 而且清晰地模拟出液滴的回弹、腾空以及二次撞壁现象的完整过程. 模拟结果与液滴撞击疏水壁面的实验结果以及VOF模拟结果符合较好, 表明本文所提出的表面张力和疏水壁面作用力处理模式对模拟液滴撞壁过程具有实际应用价值.
    Research on the droplet impact on a hydrophobic surface is of important theoretical significance and engineering value, both in mesoscopic fluid mechanics and interactions between microfluid and special materials. The van der Waals (vdW) equation of state relates the pressure to the temperature and the density of the fluid, and gives the long-range attractive force and short-range repulsive force between particles. The van der Waals equation of state can be used to describe the surface tension between liquid and vapor. As a pure meshless particle method, the smoothed particle hydrodynamic (SPH) method can use the vdW equation of state written in SPH form of N-S equations to describe the surface tension. The vdW surface tension mode is validated by simulating the coalescence of two equally sized static droplets in vacuum. Repellant of the hydrophobic surface is derived from a core potential. By combining the vdW surface tension and the repulsive force of the surface, the phenomenon of a liquid droplet impact with a certain initial velocity on the hydrophobic surface is studied. The SPH model is not only capable to describe the spreading of the droplet after it contacts the surface, but also clearly reproduces the springback, bouncing and secondary impact of the droplet. During the deformation of the droplet, the inertia force impels the spreading process of the droplet whilst the springback and bouncing behavior is dominated by the surface tension. The simulated results are in good agreement with the published experimental observations and VOF simulated results, indicating that the way we treat the surface tension and the repulsive force of the hydrophobic surface is effective and applicable in droplet impact surface problems. The impact velocity and liquid viscosity are considered to be two important factors that affect the deformation of the droplet after it contacts the surface. By varying the impact velocity within a certain range it is concluded that the maximum liquid-solid contact area increases as the impact velocity grows, and the bounced droplet will leave the surface when the velocity is big enough. Another comparison between different liquid viscosities shows that the maximum contact area decreases as the liquid viscosity increases because of the viscous dissipation, and the droplet barely rebound when the liquid viscosity is big enough.
    • 基金项目: 国家自然科学基金(批准号:51079095)和国家自然科学基金创新研究群体科学基金(批准号:51021004)资助的课题.
    • Funds: Project supported by the National Natural Science foundation of China (Grant No. 51079095), and the Science Fund for Creative Research Groups of the National Natural Science Foundation of China (Grant No. 51021004).
    [1]

    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Method Appl. M. 139 3

    [2]

    Vinh Phu N, Timon R, Stéphane B, Marc D 2008 Math. Comput. Simulat. 79 763

    [3]

    Cheng R J, Ge H X 2012 Chin. Phys. B 21 040203

    [4]

    Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205

    [5]

    Feng Z, Wang X D, Ouyang J 2013 Chin. Phys. B 22 074704

    [6]

    Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202

    [7]

    Qin Y X, Liu Y Y, Li Z H, Yang M 2014 Chin. Phys. B 23 070207

    [8]

    Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204

    [9]

    Xia M H, Li J 2007 Chin. Phys. B 16 3067

    [10]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese) [陈丽, 程玉民 2008 物理学报 57 6047]

    [11]

    Ghou A, Malfreyt P 2011 Phys. Rev. E. 83 051601

    [12]

    Liu X L, Cheng P 2013 Int. J. Heat Mass Tran. 64 1041

    [13]

    Feng S D, Tsutahara M, Ji Z Z 2001 Chin. Phys. B 10 587

    [14]

    Liu M B, Liu G R 2010 Arch. Comput. Method E S. 17 25

    [15]

    Li Q, Cai T M, He G Q, Hu C B 2006 Appl. Math. Mech-Engl. 27 67

    [16]

    Zhang M Y, Zhang H, Zheng L L 2007 Numer. Heat Tr. A-Appl. 52 299

    [17]

    Zhang M Y, Zhang H, Zheng L L 2008 Int. J. Heat Mass Tran. 51 3410

    [18]

    Morris J P 2000 Int. J. Numer. Meth Fl. 33 333

    [19]

    Nugent S, Posch H A 2000 Phys. Rev. E 62 4968

    [20]

    Meleán Y, Sigalotti L D G, Hasmy A 2004 Comput. Phys. Commun. 157 191

    [21]

    Zhou G Z, Wen G, Li J H 2008 Powder Technol. 183 21

    [22]

    Li D M, Wang Z C, Bai L, Wang X 2013 Acta Phys. Sin. 62 194704 (in Chinese) [李大鸣, 王志超, 白玲, 王笑 2013 物理学报 62 194704]

    [23]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [24]

    López H, Sigalotti L D G 2006 P hys. Rev. E 73 1201

    [25]

    Meleán Y, Sigalotti L D G 2005 Int. J. Heat. Mass. Tran. 48 4041

    [26]

    Fang H S, Bao K, Wei J A, Zhang H, Wu E H, Zheng L L 2009 Numer. Heat Tr. A.-Appl. 55 124

    [27]

    Jiang T, Ouyang J, Yang B, Ren J 2010 Comput. Mech. 45 573

    [28]

    Liu M B, Shao J R, Chang J Z 2012 Sci. China Tech. Sci. 55 244

    [29]

    Tartakovsky A, Meakin P 2005 Phys. Rev. E 72 026301

    [30]

    Shirtcliffe N J, McHale G, Atherton S, Newton M I 2010 Adv Colloid Interfac 161 124

    [31]

    Lafuma A, Quere D 2003 Nat Mater 2 457

    [32]

    Hoover W G 2006 Smooth particle applied mechanics:the state of the art (Singapore:World Scientific) p94

    [33]

    Charles A N 2014 Ph. D. Dissertation (Melbourne, Australia:RMIT University)

    [34]

    Charles A N, Daivis P 2011 19th International Congress on Modelling and Simulation Perth, Australia, December 12-16, 2011 p516

    [35]

    Charles A, Daivis P 2009 18th World IMACS/MODSIM Congress Cairns, Australia July 13-17 2009 p303

    [36]

    Lattanzio J C, Monaghan J J, Pongracic H, Schwarz M P 1986 SIAM J. Sci. Stat. Comp. 7 591

    [37]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 物理学报 61 224701]

    [38]

    Liu D 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [刘栋 2013 博士学位论文 (北京:清华大学)]

    [39]

    Menchaca-Rocha A, Martínez-Dávalos A, Núñez R, Popinet S, Zaleski S 2001 Phys. Rev. E 63 046309

    [40]

    Mao T, Kuhn D C S, Tran H 1997 AIChE J 43 2169

    [41]

    Li Y 2008 Master Dissertation ( Dalian:Dalian University of Technology) (in Chinese) [李燕 2008 硕士学位论文 (大连:大连理工大学)]

  • [1]

    Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P 1996 Comput. Method Appl. M. 139 3

    [2]

    Vinh Phu N, Timon R, Stéphane B, Marc D 2008 Math. Comput. Simulat. 79 763

    [3]

    Cheng R J, Ge H X 2012 Chin. Phys. B 21 040203

    [4]

    Cheng Y M, Li R X, Peng M J 2012 Chin. Phys. B 21 090205

    [5]

    Feng Z, Wang X D, Ouyang J 2013 Chin. Phys. B 22 074704

    [6]

    Chen L, Ma H P, Cheng Y M 2013 Chin. Phys. B 22 050202

    [7]

    Qin Y X, Liu Y Y, Li Z H, Yang M 2014 Chin. Phys. B 23 070207

    [8]

    Weng Y J, Cheng Y M 2013 Chin. Phys. B 22 090204

    [9]

    Xia M H, Li J 2007 Chin. Phys. B 16 3067

    [10]

    Chen L, Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese) [陈丽, 程玉民 2008 物理学报 57 6047]

    [11]

    Ghou A, Malfreyt P 2011 Phys. Rev. E. 83 051601

    [12]

    Liu X L, Cheng P 2013 Int. J. Heat Mass Tran. 64 1041

    [13]

    Feng S D, Tsutahara M, Ji Z Z 2001 Chin. Phys. B 10 587

    [14]

    Liu M B, Liu G R 2010 Arch. Comput. Method E S. 17 25

    [15]

    Li Q, Cai T M, He G Q, Hu C B 2006 Appl. Math. Mech-Engl. 27 67

    [16]

    Zhang M Y, Zhang H, Zheng L L 2007 Numer. Heat Tr. A-Appl. 52 299

    [17]

    Zhang M Y, Zhang H, Zheng L L 2008 Int. J. Heat Mass Tran. 51 3410

    [18]

    Morris J P 2000 Int. J. Numer. Meth Fl. 33 333

    [19]

    Nugent S, Posch H A 2000 Phys. Rev. E 62 4968

    [20]

    Meleán Y, Sigalotti L D G, Hasmy A 2004 Comput. Phys. Commun. 157 191

    [21]

    Zhou G Z, Wen G, Li J H 2008 Powder Technol. 183 21

    [22]

    Li D M, Wang Z C, Bai L, Wang X 2013 Acta Phys. Sin. 62 194704 (in Chinese) [李大鸣, 王志超, 白玲, 王笑 2013 物理学报 62 194704]

    [23]

    Monaghan J J 2000 J. Comput. Phys. 159 290

    [24]

    López H, Sigalotti L D G 2006 P hys. Rev. E 73 1201

    [25]

    Meleán Y, Sigalotti L D G 2005 Int. J. Heat. Mass. Tran. 48 4041

    [26]

    Fang H S, Bao K, Wei J A, Zhang H, Wu E H, Zheng L L 2009 Numer. Heat Tr. A.-Appl. 55 124

    [27]

    Jiang T, Ouyang J, Yang B, Ren J 2010 Comput. Mech. 45 573

    [28]

    Liu M B, Shao J R, Chang J Z 2012 Sci. China Tech. Sci. 55 244

    [29]

    Tartakovsky A, Meakin P 2005 Phys. Rev. E 72 026301

    [30]

    Shirtcliffe N J, McHale G, Atherton S, Newton M I 2010 Adv Colloid Interfac 161 124

    [31]

    Lafuma A, Quere D 2003 Nat Mater 2 457

    [32]

    Hoover W G 2006 Smooth particle applied mechanics:the state of the art (Singapore:World Scientific) p94

    [33]

    Charles A N 2014 Ph. D. Dissertation (Melbourne, Australia:RMIT University)

    [34]

    Charles A N, Daivis P 2011 19th International Congress on Modelling and Simulation Perth, Australia, December 12-16, 2011 p516

    [35]

    Charles A, Daivis P 2009 18th World IMACS/MODSIM Congress Cairns, Australia July 13-17 2009 p303

    [36]

    Lattanzio J C, Monaghan J J, Pongracic H, Schwarz M P 1986 SIAM J. Sci. Stat. Comp. 7 591

    [37]

    Yang X F, Liu M B 2012 Acta Phys. Sin. 61 224701 (in Chinese) [杨秀峰, 刘谋斌 2012 物理学报 61 224701]

    [38]

    Liu D 2013 Ph. D. Dissertation (Beijing:Tsinghua University) (in Chinese) [刘栋 2013 博士学位论文 (北京:清华大学)]

    [39]

    Menchaca-Rocha A, Martínez-Dávalos A, Núñez R, Popinet S, Zaleski S 2001 Phys. Rev. E 63 046309

    [40]

    Mao T, Kuhn D C S, Tran H 1997 AIChE J 43 2169

    [41]

    Li Y 2008 Master Dissertation ( Dalian:Dalian University of Technology) (in Chinese) [李燕 2008 硕士学位论文 (大连:大连理工大学)]

  • [1] 周浩, 李毅, 刘海, 陈鸿, 任磊生. 最优输运无网格方法及其在液滴表面张力效应模拟中的应用. 物理学报, 2021, 70(24): 240203. doi: 10.7498/aps.70.20211078
    [2] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解. 物理学报, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [3] 张旋, 张天赐, 葛际江, 蒋平, 张贵才. 表面活性剂对气-液界面纳米颗粒吸附规律的影响. 物理学报, 2020, 69(2): 026801. doi: 10.7498/aps.69.20190756
    [4] 沈学峰, 曹宇, 王军锋, 刘海龙. 剪切变稀液滴撞击不同浸润性壁面的数值模拟研究. 物理学报, 2020, 69(6): 064702. doi: 10.7498/aps.69.20191682
    [5] 赵可, 佘阳梓, 蒋彦龙, 秦静, 张振豪. 液氮滴撞击壁面相变行为的数值研究. 物理学报, 2019, 68(24): 244401. doi: 10.7498/aps.68.20190945
    [6] 荣松, 沈世全, 王天友, 车志钊. 液滴撞击加热壁面雾化弹起模式及驻留时间. 物理学报, 2019, 68(15): 154701. doi: 10.7498/aps.68.20190097
    [7] 艾旭鹏, 倪宝玉. 流体黏性及表面张力对气泡运动特性的影响. 物理学报, 2017, 66(23): 234702. doi: 10.7498/aps.66.234702
    [8] 孙鹏楠, 李云波, 明付仁. 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015, 64(17): 174701. doi: 10.7498/aps.64.174701
    [9] 马理强, 苏铁熊, 刘汉涛, 孟青. 微液滴振荡过程的光滑粒子动力学方法数值模拟. 物理学报, 2015, 64(13): 134702. doi: 10.7498/aps.64.134702
    [10] 沈胜强, 张洁珊, 梁刚涛. 液滴撞击加热壁面传热实验研究. 物理学报, 2015, 64(13): 134704. doi: 10.7498/aps.64.134704
    [11] 宋保维, 任峰, 胡海豹, 郭云鹤. 表面张力对疏水微结构表面减阻的影响. 物理学报, 2014, 63(5): 054708. doi: 10.7498/aps.63.054708
    [12] 梁刚涛, 郭亚丽, 沈胜强. 液滴低速撞击润湿球面现象观测分析. 物理学报, 2013, 62(18): 184703. doi: 10.7498/aps.62.184703
    [13] 苏铁熊, 马理强, 刘谋斌, 常建忠. 基于光滑粒子动力学方法的液滴冲击固壁面问题数值模拟. 物理学报, 2013, 62(6): 064702. doi: 10.7498/aps.62.064702
    [14] 梁刚涛, 沈胜强, 郭亚丽, 陈觉先, 于欢, 李熠桥. 实验观测液滴撞击倾斜表面液膜的特殊现象. 物理学报, 2013, 62(8): 084707. doi: 10.7498/aps.62.084707
    [15] 韩亚伟, 强洪夫, 赵玖玲, 高巍然. 光滑粒子流体动力学方法固壁处理的一种新型排斥力模型. 物理学报, 2013, 62(4): 044702. doi: 10.7498/aps.62.044702
    [16] 毕菲菲, 郭亚丽, 沈胜强, 陈觉先, 李熠桥. 液滴撞击固体表面铺展特性的实验研究. 物理学报, 2012, 61(18): 184702. doi: 10.7498/aps.61.184702
    [17] 马理强, 常建忠, 刘汉涛, 刘谋斌. 液滴溅落问题的光滑粒子动力学模拟. 物理学报, 2012, 61(5): 054701. doi: 10.7498/aps.61.054701
    [18] 蒋涛, 欧阳洁, 赵晓凯, 任金莲. 黏性液滴变形过程的核梯度修正光滑粒子动力学模拟. 物理学报, 2011, 60(5): 054701. doi: 10.7498/aps.60.054701
    [19] 王晓亮, 陈硕. 液气共存的耗散粒子动力学模拟. 物理学报, 2010, 59(10): 6778-6785. doi: 10.7498/aps.59.6778
    [20] 刘秀梅, 贺杰, 陆建, 倪晓武. 表面张力对固壁旁空泡运动特性影响的理论和实验研究. 物理学报, 2009, 58(6): 4020-4025. doi: 10.7498/aps.58.4020
计量
  • 文章访问数:  3741
  • PDF下载量:  4466
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-09-24
  • 修回日期:  2014-12-22
  • 刊出日期:  2015-06-05

基于范德瓦尔斯表面张力模式液滴撞击疏水壁面过程的研究

  • 1. 天津大学水利工程仿真与安全国家重点实验室, 天津 300072;
  • 2. 阿德莱德大学土木与环境工程学院, 澳大利亚阿德莱德, 5005
    基金项目: 国家自然科学基金(批准号:51079095)和国家自然科学基金创新研究群体科学基金(批准号:51021004)资助的课题.

摘要: 液滴撞击疏水壁面过程的研究在介观流体力学和微流体作用材料科学的研究中具有重要的理论意义和工程价值. 论文在SPH方法中引入范德瓦尔斯状态方程处理液滴表面张力, 考虑流体粒子之间远程吸引, 近程排斥的内部作用力, 提出了流体粒子与疏水壁面粒子间势能函数与表面张力相结合的作用模式. 通过模拟真空条件下两个静止的等体积液滴相互融合的过程, 验证了计算模式在模拟液滴的表面张力中的有效性. 采用该模式模拟的液滴撞击疏水壁面过程, 不仅能够有效地模拟液滴撞击壁面后的变形过程, 而且清晰地模拟出液滴的回弹、腾空以及二次撞壁现象的完整过程. 模拟结果与液滴撞击疏水壁面的实验结果以及VOF模拟结果符合较好, 表明本文所提出的表面张力和疏水壁面作用力处理模式对模拟液滴撞壁过程具有实际应用价值.

English Abstract

参考文献 (41)

目录

    /

    返回文章
    返回