搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究

石磊 冯士维 石帮兵 闫鑫 张亚民

引用本文:
Citation:

开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用研究

石磊, 冯士维, 石帮兵, 闫鑫, 张亚民

Degradation induced by voltage and current for AlGaN/GaN high-electron mobility transistor under on-state stress

Shi Lei, Feng Shi-Wei, Shi Bang-Bing, Yan Xin, Zhang Ya-Min
PDF
导出引用
  • 通过采集等功率的两种不同开态直流应力作用下AlGaN/GaN高电子迁移率晶体管(HEMTs)漏源电流输出特性、源区和漏区大信号寄生电阻、转移特性、阈值电压随应力时间的变化, 并使用光发射显微镜观察器件漏电流情况, 研究了开态应力下电压和电流对AlGaN/GaN高电子迁移率晶体管的退化作用. 结果表明, 低电压大电流应力下器件退化很少, 高电压大电流下器件退化较明显. 高电压是HEMTs退化的主要因素, 栅漏之间高电场引起的逆压电效应对参数的永久性退化起决定性作用. 除此之外, 器件表面损坏部位的显微图像表明低电压大电流下器件失效是由于局部电流密度过高, 出现热斑导致器件损伤引起的.
    Voltage and current degrade the AlGaN/GaN high electron mobility transistors (HEMTs) under on-state stress. To determine which one dominates the degradation, two on-state stresses which have equal power are exerted on AlGaN/GaN HEMTs: high voltage and low current on sample A, low voltage and high current on sample B. In the former stress, drain-source voltage (VDS) is 28 V, drain-source current (IDS) is 75 mA/mm. In the latter stress, VDS is 14 V and IDS is 150 mA/mm. The package temperatures of samples A and B are kept at 150 ℃. The samples are measured every 24 hours, with an extra measurement at the 8th hour in the first 24 hours (note that the time refers to the stressing time). There is an interval of 4 hours between the stressing and the measurement. The device parameters include drain-source current-voltage (IDS-VDS) characteristics, large-signal parasitic source resistance (RS), large-signal parasitic drain resistance (RD), and transfer characteristics between IDS and gate-source voltage (VGS). The emission microscope (EMMI) is used to study the leakage current after experiment. The IDS-VDS characteristics of sample B are kept constant after being stressed, while that of device A shifts downward after being stressed. RS of sample A, RS of sample B, and RD of sample B increase slightly, RD of sample A increases more obviously with most change happening in the first 8 hours. IDS-VGS characteristics of sample B kept constant, IDS-VGS characteristics of sample A shift downward. The changes of threshold voltage (VGS(th)) is obtained from the transfer characteristics, and it is similar to the changes of transfer characteristics. The VGS(th) magnitude (absolute value) of sample A decreases obviously while that of sample B decreases slightly. The measurements show that the device under low voltage and high current stress degrades little and the device under high voltage and low current stress degrades more obviously. The EMMI images show that the leakage of sample A is greater than that of sample B. The analyses of the parameter change, experiment setting and EMMI image indicate that the voltage, rather than the current, dominates the degradation for AlGaN/GaN HEMTs. The influences of hot electron effect, gate electron injection, and self-heating are recoverable, and they vanish in the interval between the stressing and the measurements. The permanent degradation of device parameter is caused by the inverse piezoelectric effect induced by high electrical field between the gate and the drain. Besides, it is found that sudden failure without precursor is easy to happen to the device under low voltage and high current stress. The microscope image of damaged area shows that the failure is due to hot spot induced by high current density.
    • 基金项目: 国家自然科学基金(批准号:61376077)和北京市自然科学基金(批准号:4132022,2132023)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61376077) and the Natural Science Foundation of Beijing, China (Grant Nos. 4132022, 2132023).
    [1]

    Soltani A, Rousseau M, Gerbedoen J C, Mattalah M, Bonanno P L, Telia A, Bourzgui N, Patriarche G, Ougazzaden A, BenMoussa A 2014 Appl. Phys. Lett. 104 233506

    [2]

    Perez-Tomas A, Fontsere A, Sanchez S, Jennings M R, Gammon P M, Cordier Y 2013 Appl. Phys. Lett. 102 0235112

    [3]

    Huang J, Li M, Tang C W, Lau K M 2014 Chin. Phys. B 23 128102

    [4]

    Jungwoo J, Xia L 2007 IEEE International Electron Devices Meeting Washington DC, USA, December 10-12, 2007 p385

    [5]

    Jungwoo J, del Alamo J A 2008 IEEE Electron Dev. Lett. 29 287

    [6]

    Dammann M, Pletschen W, Waltereit P, Bronner W, Quay R, Mller S, Mikulla M, Ambacher O, van der Wel P J, Murad S, Rödle T, Behtash R, Bourgeois F, Riepe K, Fagerlind M, Sveinbjörnsson E Ö 2009 Microelectron Reliab. 49 474

    [7]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511]

    [8]

    Greenberg D R, del Alamo J A, Bhat R 1995 IEEE Trans. Electron Dev. 42 1574

    [9]

    Greenberg D R, del Alamo J A 1996 IEEE Trans. Electron Dev. 43 1304

    [10]

    Barry E A, Kim K W, Kochelap V A 2002 Appl. Phys. Lett. 80 2317

    [11]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [12]

    Meneghini M, Stocco A, Silvestri R, Meneghesso G, Zanoni E 2012 Appl. Phys. Lett. 100 233508

    [13]

    Joh J, Del Alamo J A 2011 IEEE Trans. Electron Dev. 58 132

    [14]

    Shi L, Feng S W, Guo C S, Zhu H, Wan N 2013 Chin. Phys. B 22 027201

    [15]

    Gaska R, Osinsky A, Yang J W, Shur M S 1998 IEEE Electron Dev. Lett. 19 89

  • [1]

    Soltani A, Rousseau M, Gerbedoen J C, Mattalah M, Bonanno P L, Telia A, Bourzgui N, Patriarche G, Ougazzaden A, BenMoussa A 2014 Appl. Phys. Lett. 104 233506

    [2]

    Perez-Tomas A, Fontsere A, Sanchez S, Jennings M R, Gammon P M, Cordier Y 2013 Appl. Phys. Lett. 102 0235112

    [3]

    Huang J, Li M, Tang C W, Lau K M 2014 Chin. Phys. B 23 128102

    [4]

    Jungwoo J, Xia L 2007 IEEE International Electron Devices Meeting Washington DC, USA, December 10-12, 2007 p385

    [5]

    Jungwoo J, del Alamo J A 2008 IEEE Electron Dev. Lett. 29 287

    [6]

    Dammann M, Pletschen W, Waltereit P, Bronner W, Quay R, Mller S, Mikulla M, Ambacher O, van der Wel P J, Murad S, Rödle T, Behtash R, Bourgeois F, Riepe K, Fagerlind M, Sveinbjörnsson E Ö 2009 Microelectron Reliab. 49 474

    [7]

    Gu W P, Hao Y, Zhang J C, Wang C, Feng Q, Ma X H 2009 Acta Phys. Sin. 58 511 (in Chinese) [谷文萍, 郝跃, 张进城, 王冲, 冯倩, 马晓华 2009 物理学报 58 511]

    [8]

    Greenberg D R, del Alamo J A, Bhat R 1995 IEEE Trans. Electron Dev. 42 1574

    [9]

    Greenberg D R, del Alamo J A 1996 IEEE Trans. Electron Dev. 43 1304

    [10]

    Barry E A, Kim K W, Kochelap V A 2002 Appl. Phys. Lett. 80 2317

    [11]

    Wang X D, Hu W D, Chen X S, Lu W 2012 IEEE Trans. Electron Dev. 59 1393

    [12]

    Meneghini M, Stocco A, Silvestri R, Meneghesso G, Zanoni E 2012 Appl. Phys. Lett. 100 233508

    [13]

    Joh J, Del Alamo J A 2011 IEEE Trans. Electron Dev. 58 132

    [14]

    Shi L, Feng S W, Guo C S, Zhu H, Wan N 2013 Chin. Phys. B 22 027201

    [15]

    Gaska R, Osinsky A, Yang J W, Shur M S 1998 IEEE Electron Dev. Lett. 19 89

  • [1] 刘帅, 史宇昊, 林天煜, 张永鹏, 路志建, 杨兰均. 工作参数对平行轨道加速器放电模式的影响. 物理学报, 2021, 70(20): 205205. doi: 10.7498/aps.70.20210484
    [2] 顾朝桥, 郭红霞, 潘霄宇, 雷志峰, 张凤祁, 张鸿, 琚安安, 柳奕天. 不同应力下碳化硅场效应晶体管器件总剂量效应及退火特性. 物理学报, 2021, 70(16): 166101. doi: 10.7498/aps.70.20210515
    [3] 刘静, 王琳倩, 黄忠孝. 基于凹槽结构抑制AlGaN/GaN高电子迁移率晶体管电流崩塌效应. 物理学报, 2019, 68(24): 248501. doi: 10.7498/aps.68.20191311
    [4] 毛清华, 刘军林, 全知觉, 吴小明, 张萌, 江风益. p型层结构与掺杂对GaInN发光二极管正向电压温度特性的影响. 物理学报, 2015, 64(10): 107801. doi: 10.7498/aps.64.107801
    [5] 南一冰, 唐义, 张丽君, 常月娥, 陈廷爱. 一种卫星平台振动光谱成像数据分块校正方法. 物理学报, 2014, 63(1): 010701. doi: 10.7498/aps.63.010701
    [6] 任舰, 闫大为, 顾晓峰. AlGaN/GaN 高电子迁移率晶体管漏电流退化机理研究. 物理学报, 2013, 62(15): 157202. doi: 10.7498/aps.62.157202
    [7] 刘昶时, 刘文莉. 由阴、阳极电压及入射光强及频率确定光电流. 物理学报, 2013, 62(2): 028401. doi: 10.7498/aps.62.028401
    [8] 余晨辉, 罗向东, 周文政, 罗庆洲, 刘培生. 新型双异质结高电子迁移率晶体管的电流崩塌效应研究. 物理学报, 2012, 61(20): 207301. doi: 10.7498/aps.61.207301
    [9] 唐秋艳, 唐义, 曹玮亮, 王静, 南一冰, 倪国强. 卫星平台复杂振动引起的光谱成像退化仿真研究. 物理学报, 2012, 61(7): 070202. doi: 10.7498/aps.61.070202
    [10] 顾江, 王强, 鲁宏. AlGaN/GaN 高速电子迁移率晶体管器件电流坍塌效应与界面热阻和温度的研究. 物理学报, 2011, 60(7): 077107. doi: 10.7498/aps.60.077107
    [11] 毛维, 杨翠, 郝跃, 张进成, 刘红侠, 马晓华, 王冲, 张金风, 杨林安, 许晟瑞, 毕志伟, 周洲, 杨凌, 王昊. 场板抑制GaN高电子迁移率晶体管电流崩塌的机理研究. 物理学报, 2011, 60(1): 017205. doi: 10.7498/aps.60.017205
    [12] 罗振飞, 吴志明, 许向东, 王涛, 蒋亚东. 纳米VOx薄膜在空气中的电学特性退化研究. 物理学报, 2011, 60(6): 067302. doi: 10.7498/aps.60.067302
    [13] 王林, 胡伟达, 陈效双, 陆卫. AlGaN/GaN HEMT器件电流坍塌和膝点电压漂移机理的研究. 物理学报, 2010, 59(8): 5730-5737. doi: 10.7498/aps.59.5730
    [14] 沈自才, 孔伟金, 冯伟泉, 丁义刚, 刘宇明, 郑慧奇, 赵雪, 赵春晴. 热控涂层光学性能退化模型研究. 物理学报, 2009, 58(2): 860-864. doi: 10.7498/aps.58.860
    [15] 王海霞, 殷 雯. 周期耦合量子阱中的输运问题. 物理学报, 2008, 57(5): 2669-2673. doi: 10.7498/aps.57.2669
    [16] 林若兵, 王欣娟, 冯 倩, 王 冲, 张进城, 郝 跃. AlGaN/GaN高电子迁移率晶体管肖特基高温退火机理研究. 物理学报, 2008, 57(7): 4487-4491. doi: 10.7498/aps.57.4487
    [17] 李若凡, 杨瑞霞, 武一宾, 张志国, 许娜颖, 马永强. 用逆压电极化模型对AlGaN/GaN 高电子迁移率晶体管电流崩塌现象的研究. 物理学报, 2008, 57(4): 2450-2455. doi: 10.7498/aps.57.2450
    [18] 许光明, 郑佳伟, 刘 勇, 崔建忠. 电磁场作用下溶质元素在镁合金AZ61的分布. 物理学报, 2007, 56(7): 4247-4251. doi: 10.7498/aps.56.4247
    [19] 梁芳营, 李汉明, 李英骏. 超导环电流的研究. 物理学报, 2006, 55(2): 830-833. doi: 10.7498/aps.55.830
    [20] 李蕾蕾, 刘红侠, 于宗光, 郝 跃. 恒流应力下E2PROM隧道氧化层的退化特性研究. 物理学报, 2006, 55(5): 2459-2463. doi: 10.7498/aps.55.2459
计量
  • 文章访问数:  6678
  • PDF下载量:  205
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-10
  • 修回日期:  2015-01-30
  • 刊出日期:  2015-06-05

/

返回文章
返回