搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶对数耦合系统在非周期外力作用下的定向输运现象

杨建强 马洪 钟苏川

引用本文:
Citation:

分数阶对数耦合系统在非周期外力作用下的定向输运现象

杨建强, 马洪, 钟苏川

The directional transport phenomenon in fractional logarithm coupled system under a non-periodic external force

Yang Jian-Qiang, Ma Hong, Zhong Su-Chuan
PDF
导出引用
  • 本文讨论了分数阶对数耦合系统在非周期外力作用情况下, 耦合粒子链的定向输运现象. 由于粒子在黏性介质中的运动具有记忆性, 所以本文通过将系统建模为分数阶对数耦合模型来研究各个系统参数对粒子链运动状态的影响. 数值仿真表明: 1)对于此类系统, 只有在存在外力作用的情况下粒子链才能够产生定向输运现象, 并且粒子链平均流速随着外力的增大而增大. 2)对于分数阶阶数较小的系统, 阻尼记忆性对粒子链的运动状态有显著的影响, 具体表现为: 粒子链的平均流速存在上界(这个上界非常小), 无论外力、耦合力以及噪声强度如何变化, 粒子链的平均流速都不会超过这个上界. 当系统的阻尼力很大且外力为零时, 粒子链不会产生定向输运现象. 3) 当系统的阶数与外力较大时, 虽然粒子链能够产生定向流, 但是此时系统对耦合力与噪声具有免疫性. 4) 耦合力与噪声强度对粒子链运动的影响只在外力较小的情况下有所表现. 在这种情况下, 当系统阶数充分大时, 粒子链的平均流速随着耦合力与噪声强度的变化而变化, 并且伴随着定向流的产生.
    Using the fractional calculus theory, we investigate the directional transport phenomenon in a fractional logarithm coupled system under the action of a non-periodic external force. When a Brownian particle moves in the media with memory such as viscoelastic media, the system should be modeled as a nonlinear fractional logarithm coupled one. Using the method of fractional difference, we can solve the model numerically and discuss the influences of the various system parameters on the average transport velocity of the particles. Numerical results show that: 1) The directional transport phenomenon in this fractional logarithmic coupled model appears only when the external force exists, and the value of the average transport velocity of the particles increases with increasing external force. 2) When the fractional order of the system is small enough, the damping memory has a significant impact on the average transport velocity of the particles. Furthermore, the average transport velocity of the particles has an upper bound (although it is very small), no matter how the external force, coupled force and the intensity of noise change, the average transport velocity of the particles is no more than the upper bound. When there is no external force and the damping force is big enough, the directional transport phenomenon disappears. 3) When the fractional order of the system and the external force are big enough, although the directional transport phenomenon appears, the coupled force and the intensity of noise have no impact on the system. 4) Only when the external force is small enough, could the coupled force and noise intensity influence the average transport velocity of the particles. In this situation, the directional transport phenomenon appears when the fractional order of the system is big enough, and the average transport velocity of the particles changes along with the change of the coupled force and the noise intensity.
      通信作者: 钟苏川, zsczsc48@hotmail.com
    • 基金项目: 国家自然科学基金(批准号: 11471229)和四川大学青年教师科研启动基金(批准号: 2082604174031)资助的课题.
      Corresponding author: Zhong Su-Chuan, zsczsc48@hotmail.com
    • Funds: Project supported by the the National Natural Science Foundation of China (Grant No. 11471229), and the Young Teacher Fund of Sichuan Uninversity, China (Grant No. 2082604174031).
    [1]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [2]

    Barbi M, Salerno M 2000 Phys. Rev. E 62 1988

    [3]

    Zheng Z G, Hu G, Hu B B 2001 Phys. Rev. Lett. 86 2273

    [4]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phy. 81 387

    [5]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear System (Beijing: Higher Education Press) [郑志刚 2004 耦合非线性动力系统的时空动力学与合作行为 (北京:高等教育出版社)]

    [6]

    Machura L, Kostur M, Luczka J 2010 Chem Phys. 375 445

    [7]

    Mielke A 2000 Phys. Rev. Lett. 84 818

    [8]

    Guerin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14

    [9]

    Chen H B, Zheng Z G 2012 J. Univ. Shanghai Sci. Technol. 346 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 346]

    [10]

    Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101

    [11]

    Downton M T, Zuchermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [12]

    Kumar K V, Ramaswamy S, Rao M 2008 Phys. Rev. E 77 020102

    [13]

    Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149

    [14]

    Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601

    [15]

    Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163

    [16]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [17]

    Ernst D, Hellmann M, Kohler J, Weiss M 2012 Soft. Matter. Comput. 8 4886

    [18]

    Tu Z, Lai L, Luo M K2014 Acta Phys. Sin. 63 120503 in Chinese 2014 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [19]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [20]

    Liu F, Anh V V, Turner I, Zhuang p 2003 J. Appl. Math. Comp. 13 233

    [21]

    Benson D A, Wheatcraft S W, Meerschaert M M 2000 Water Resour. Pes. 36 1403

    [22]

    Zhang L, Deng K, Luo M K 2012 Chin. Phys. B 21 090505

    [23]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [24]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651

    [25]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation (Beijing: Science Press) (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京:科学出版社)]

    [26]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

  • [1]

    Mateos J L 2000 Phys. Rev. Lett. 84 258

    [2]

    Barbi M, Salerno M 2000 Phys. Rev. E 62 1988

    [3]

    Zheng Z G, Hu G, Hu B B 2001 Phys. Rev. Lett. 86 2273

    [4]

    Hanggi P, Marchesoni F 2009 Rev. Mod. Phy. 81 387

    [5]

    Zheng Z G 2004 Spantiotemporal Dynamics and Collective Behaviors in Coupled Nonlinear System (Beijing: Higher Education Press) [郑志刚 2004 耦合非线性动力系统的时空动力学与合作行为 (北京:高等教育出版社)]

    [6]

    Machura L, Kostur M, Luczka J 2010 Chem Phys. 375 445

    [7]

    Mielke A 2000 Phys. Rev. Lett. 84 818

    [8]

    Guerin T, Prost J, Martin P 2010 Current Opinnion in Cell Biology 22 14

    [9]

    Chen H B, Zheng Z G 2012 J. Univ. Shanghai Sci. Technol. 346 (in Chinese) [陈宏斌, 郑志刚 2012 上海理工大学学报 346]

    [10]

    Lipowsky R, Klumpp S, Nieuwenhuizen T M 2001 Phys. Rev. Lett. 87 108101

    [11]

    Downton M T, Zuchermann M J, Craig E M, Plischke M, Linke H 2006 Phys. Rev. E 73 011909

    [12]

    Kumar K V, Ramaswamy S, Rao M 2008 Phys. Rev. E 77 020102

    [13]

    Fendrik A J, Romanelli L, Reale M V 2012 Phys. Rev. E 85 041149

    [14]

    Savel E S, Marchesoni F, Nori F 2003 Phys. Rev. Lett. 91 10601

    [15]

    Veigel C, Schmidt C F 2011 Nat. Rev. Mol. Cel. Biol. 12 163

    [16]

    Ai B Q, He Y F, Zhong W R 2010 Phys. Rev. E 82 061102

    [17]

    Ernst D, Hellmann M, Kohler J, Weiss M 2012 Soft. Matter. Comput. 8 4886

    [18]

    Tu Z, Lai L, Luo M K2014 Acta Phys. Sin. 63 120503 in Chinese 2014 63 120503 (in Chinese) [屠浙, 赖莉, 罗懋康 2014 物理学报 63 120503]

    [19]

    Wang F, Deng C, Tu Z, Ma H 2013 Acta Phys. Sin. 62 040501 (in Chinese) [王飞, 邓翠, 屠浙, 马洪 2013 物理学报 62 040501]

    [20]

    Liu F, Anh V V, Turner I, Zhuang p 2003 J. Appl. Math. Comp. 13 233

    [21]

    Benson D A, Wheatcraft S W, Meerschaert M M 2000 Water Resour. Pes. 36 1403

    [22]

    Zhang L, Deng K, Luo M K 2012 Chin. Phys. B 21 090505

    [23]

    Lin L F, Zhou X W, Ma H 2013 Acta Phys. Sin. 62 240501 (in Chinese) [林丽烽, 周兴旺, 马洪 2013 物理学报 62 240501]

    [24]

    de Souza Silva C C, van de Vondel J, Morelle M, Moshchalkov V V 2006 Nature 440 651

    [25]

    Bao J D 2009 Random Simulation Method of Classical and Quantum Dissipation (Beijing: Science Press) (in Chinese) [包景东 2009 经典和量子耗散系统的随机模拟方法 (北京:科学出版社)]

    [26]

    Podlubny I 1998 Fractional Differential Equation (San Diego: Academic Press)

  • [1] 许鹏飞, 公徐路, 李毅伟, 靳艳飞. 含记忆阻尼函数的周期势系统随机共振. 物理学报, 2022, 71(8): 080501. doi: 10.7498/aps.71.20211732
    [2] 彭皓, 任芮彬, 钟扬帆, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象. 物理学报, 2022, 71(3): 030502. doi: 10.7498/aps.71.20211272
    [3] 彭皓, 任芮彬, 蔚涛. 三态噪声激励下分数阶耦合系统的随机共振现象研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211272
    [4] 杨建华, 马强, 吴呈锦, 刘后广. 分数阶双稳系统中的非周期振动共振. 物理学报, 2018, 67(5): 054501. doi: 10.7498/aps.67.20172046
    [5] 刘晓君, 洪灵, 江俊. 非自治分数阶Duffing系统的激变现象. 物理学报, 2016, 65(18): 180502. doi: 10.7498/aps.65.180502
    [6] 李爽, 李倩, 李佼瑞. Duffing系统随机相位抑制混沌与随机共振并存现象的机理研究. 物理学报, 2015, 64(10): 100501. doi: 10.7498/aps.64.100501
    [7] 刘德浩, 任芮彬, 杨博, 罗懋康. 涨落作用下周期驱动的分数阶过阻尼棘轮模型的混沌输运现象. 物理学报, 2015, 64(22): 220501. doi: 10.7498/aps.64.220501
    [8] 任芮彬, 刘德浩, 王传毅, 罗懋康. 时间非对称外力驱动分数阶布朗马达的定向输运. 物理学报, 2015, 64(9): 090505. doi: 10.7498/aps.64.090505
    [9] 秦天奇, 王飞, 杨博, 罗懋康. 带反馈的分数阶耦合布朗马达的定向输运. 物理学报, 2015, 64(12): 120501. doi: 10.7498/aps.64.120501
    [10] 谢文贤, 李东平, 许鹏飞, 蔡力, 靳艳飞. 具有固有频率涨落的记忆阻尼线性系统的随机共振. 物理学报, 2014, 63(10): 100502. doi: 10.7498/aps.63.100502
    [11] 季袁冬, 张路, 罗懋康. 幂函数型单势阱随机振动系统的广义随机共振. 物理学报, 2014, 63(16): 164302. doi: 10.7498/aps.63.164302
    [12] 屠浙, 赖莉, 罗懋康. 分数阶非对称耦合系统在对称周期势中的定向输运. 物理学报, 2014, 63(12): 120503. doi: 10.7498/aps.63.120503
    [13] 王飞, 谢天婷, 邓翠, 罗懋康. 系统非对称性及记忆性对布朗马达输运行为的影响. 物理学报, 2014, 63(16): 160502. doi: 10.7498/aps.63.160502
    [14] 董小娟, 晏爱君. 双稳态系统中随机共振和相干共振的相关性. 物理学报, 2013, 62(7): 070501. doi: 10.7498/aps.62.070501
    [15] 林丽烽, 周兴旺, 马洪. 分数阶双头分子马达的欠扩散输运现象. 物理学报, 2013, 62(24): 240501. doi: 10.7498/aps.62.240501
    [16] 赖莉, 周薛雪, 马洪, 罗懋康. 分数阶布朗马达在闪烁棘齿势中的合作输运现象. 物理学报, 2013, 62(15): 150502. doi: 10.7498/aps.62.150502
    [17] 王飞, 邓翠, 屠浙, 马洪. 耦合分数阶布朗马达在非对称势中的输运. 物理学报, 2013, 62(4): 040501. doi: 10.7498/aps.62.040501
    [18] 高仕龙, 钟苏川, 韦鹍, 马洪. 过阻尼分数阶Langevin方程及其随机共振. 物理学报, 2012, 61(10): 100502. doi: 10.7498/aps.61.100502
    [19] 白文斯密, 彭皓, 屠浙, 马洪. 分数阶Brown马达及其定向输运现象. 物理学报, 2012, 61(21): 210501. doi: 10.7498/aps.61.210501
    [20] 林 敏, 黄咏梅, 方利民. 耦合双稳系统的随机共振控制. 物理学报, 2008, 57(4): 2048-2052. doi: 10.7498/aps.57.2048
计量
  • 文章访问数:  3241
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-31
  • 修回日期:  2015-04-22
  • 刊出日期:  2015-09-05

分数阶对数耦合系统在非周期外力作用下的定向输运现象

  • 1. 四川大学数学学院, 成都 610064;
  • 2. 四川大学空天科学与工程学院, 成都 610065
  • 通信作者: 钟苏川, zsczsc48@hotmail.com
    基金项目: 国家自然科学基金(批准号: 11471229)和四川大学青年教师科研启动基金(批准号: 2082604174031)资助的课题.

摘要: 本文讨论了分数阶对数耦合系统在非周期外力作用情况下, 耦合粒子链的定向输运现象. 由于粒子在黏性介质中的运动具有记忆性, 所以本文通过将系统建模为分数阶对数耦合模型来研究各个系统参数对粒子链运动状态的影响. 数值仿真表明: 1)对于此类系统, 只有在存在外力作用的情况下粒子链才能够产生定向输运现象, 并且粒子链平均流速随着外力的增大而增大. 2)对于分数阶阶数较小的系统, 阻尼记忆性对粒子链的运动状态有显著的影响, 具体表现为: 粒子链的平均流速存在上界(这个上界非常小), 无论外力、耦合力以及噪声强度如何变化, 粒子链的平均流速都不会超过这个上界. 当系统的阻尼力很大且外力为零时, 粒子链不会产生定向输运现象. 3) 当系统的阶数与外力较大时, 虽然粒子链能够产生定向流, 但是此时系统对耦合力与噪声具有免疫性. 4) 耦合力与噪声强度对粒子链运动的影响只在外力较小的情况下有所表现. 在这种情况下, 当系统阶数充分大时, 粒子链的平均流速随着耦合力与噪声强度的变化而变化, 并且伴随着定向流的产生.

English Abstract

参考文献 (26)

目录

    /

    返回文章
    返回