搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究

杨文献 季莲 代盼 谭明 吴渊渊 卢建娅 李宝吉 顾俊 陆书龙 马忠权

引用本文:
Citation:

基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究

杨文献, 季莲, 代盼, 谭明, 吴渊渊, 卢建娅, 李宝吉, 顾俊, 陆书龙, 马忠权

Study on photoluminescence properties of 1.05 eV InGaAsP layers grown by molecular beam epitaxy

Yang Wen-Xian, Ji Lian, Dai Pan, Tan Ming, Wu Yuan-Yuan, Lu Jian-Ya, Li Bao-Ji, Gu Jun, Lu Shu-Long, Ma Zhong-Quan
PDF
导出引用
  • 利用分子束外延方法制备了应用于四结光伏电池的1.05 eV InGaAsP薄膜, 并对其超快光学特性进行了研究. 温度和激发功率有关的发光特性表明: InGaAsP材料以自由激子发光为主. 室温下InGaAsP材料的载流子发光弛豫时间达到10.4 ns, 且随激发功率增大而增大. 发光弛豫时间随温度升高呈现S形变化, 在低于50 K时随温度升高而增大, 在50–150 K之间时减小, 而温度高于150 K时再次增大. 基于载流子弛豫动力学, 分析并解释了温度及非辐射复合中心浓度对样品材料载流子发光弛豫时间S形变化的影响.
    The photoluminescence properties of InGaAsP films with a bandgap energy of 1.05 eV for quadruple-junction solar cells grown by molecular beam epitaxy (MBE) are investigated. We make the excitation intensity and temperature dependence of continuous-wave photoluminescence (cw-PL) measurements. The PL peak position is 1.1 eV at 10 K, and almost independent of the excitation power, but the integrated intensity of the PL emission peaks is roughly proportional to the excitation power. The shift of peak position with temperature follows the band gap shrinking predicted by the well-known Varshni's empirical formula. These results indicate that the intrinsic transition dominates the light emission of the InGaAsP material. In addition, we also make the time-resolved photoluminescence (TRPL) measurements to determine the carrier luminescence relaxation time in InGaAsP. PL spectra suggest that the relaxation time is 10.4 ns at room temperature and increases with increasing excitation power, which demonstrates the high quality of the InGaAsP material. However, the relaxation time shows an S-shape variation with increasing temperature: it increases at temperatures lower than 50 K, and then decreases between 50–150 K, and increases again when temperature is over 150 K. According to the effect of temperature and the non-radiative recombination center concentration on the carrier relaxation time, the recombination mechanism of S-shape variation can be explained by the carrier relaxation dynamics.
      通信作者: 陆书龙, sllu2008@sinano.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 61176128, 61376081, 61274076)、国家高技术研究发展计划(批准号: 2013AA050403)、苏州市自然科学基金(批准号: SYG201437)和中国科学院苏州纳米技术与纳米仿生研究所和索尼公司联合项目(批准号: Y1AAQ11002, Y2AAQ11004)资助的课题.
      Corresponding author: Lu Shu-Long, sllu2008@sinano.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176128, 61376081, 61274076), the National High Technology Research and Development Program of China (Grant No. 2013AA050403), the Application Foundation of Suzhou, China (Grant No. SYG201437), and the SINANO-SONY Joint Program (Grant Nos. Y1AAQ11002, Y2AAQ11004).
    [1]

    Friedman D J, Kurtz S R, Bertness K A, Kibbler A E, Kramer C, Olson J M, King D L, Hansen B R, Snyder J K 1995 Prog Photovolt. 3 47

    [2]

    Yamaguchi M 2003 Sol. Energy Mater. Sol. Cells 75 261

    [3]

    Dimroth F, Beckert R, Meusel M, Schubert U, Bett A W 2001 Prog. Photovolt. 9 165

    [4]

    Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B, Yang G Z 2015 Chin. Phys. B 24 054201

    [5]

    Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He Xiao-G, Wang H, Zhu J J, Zhang S M, Zhang B S, Yang H 2014 Chin. Phys. B 23 068801

    [6]

    Wang H X, Zheng X H, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Acta Phys. Sin. 62 218801 (in Chinese) [王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 物理学报 62 218801]

    [7]

    Green M A, Emery K, Hishikawa Y, Warta W 2013 Prog. Photovolt: Res. Appl. 21 827

    [8]

    Marti A, Araujo G L 1996 Sol. Energy Mater. Sol. Cells 43 203

    [9]

    Shockley W, Queisser H 1961 J. Appl. Phys. 32 510

    [10]

    Law D C, King R R, Yoon H, Archer M J, Boca A, Fetzer C M, Mesropian S, Isshiki T, Haddad M, Edmondson K M, Bhusari D, Yena J, Sherif R A, Atwater H A, Karama N H 2010 Sol. Energy Mater. Sol. Cells 94 1314

    [11]

    Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits N T D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T, Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277

    [12]

    Schimper H J, Kollonitsch Z, Moller K, Seidel U, Bloeck U, Schwarzburg K, Willing F, Hannappel T 2006 J. Cryst. Growth 287 642

    [13]

    Dharmarasu N, Yamaguchi M, Khan A, Yamada T, Tanabe T, Takagishi S, Takamoto T, Ohshima T, Itoh H, Imaizumi M, Matsuda S 2010 Appl. Phys. Lett. 79 2399

    [14]

    Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J, Yang T 2013 Chin. Phys. Lett. 30 068101

    [15]

    Baillargeon J N, Cho A Y, Thiel F A, Fischer R J, Pearah P J, Cheng K Y 1994 Appl. Phys. Lett. 65 207

    [16]

    Baillargeon J N, Cho A Y, Cheng K Y 1996 J. Appl. Phys. 79 7652

    [17]

    Ji L, Lu S L, Wu Y Y, Dai P, Bian L F, Arimochi M, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S, Yang H 2014 Sol. Energy Mater. Sol. Cells 27 1

    [18]

    Yin M, Nash G R, Coomber S D, Buckle L, Carrington Krier J P A, Aandreev A, Przeslak J S B, Valicourt G, Smith S J, Emeny M T, Ashley T 2008 Appl. Phys. Lett. 93 121106

    [19]

    Fouquet J E, Siegman A E 1985 Appl. Phys. Lett. 46 280

    [20]

    Varshni Y P 1967 Physica 34 149

    [21]

    Satzke K, Weiser G, Hoger R, Thulke W 1988 J. Appl. Phys. 63 5485

    [22]

    Li C F, Lin D Y, Huang Y S, Chen Y F, Tiong K K 1997 J. Appl. Phys. 81 400

    [23]

    Schwedler R, Reinhardt F, Grützmacher D, Wolter K 1991 J. Cryst. Growth 107 531

    [24]

    Maksimov O, Guo S P, Muňoz M, Tamargo M C 2001 J. Appl. Phys. 90 5135

  • [1]

    Friedman D J, Kurtz S R, Bertness K A, Kibbler A E, Kramer C, Olson J M, King D L, Hansen B R, Snyder J K 1995 Prog Photovolt. 3 47

    [2]

    Yamaguchi M 2003 Sol. Energy Mater. Sol. Cells 75 261

    [3]

    Dimroth F, Beckert R, Meusel M, Schubert U, Bett A W 2001 Prog. Photovolt. 9 165

    [4]

    Wang J Z, Huang Q L, Xu X, Quan B G, Luo J H, Zhang Y, Ye J S, Li D M, Meng Q B, Yang G Z 2015 Chin. Phys. B 24 054201

    [5]

    Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He Xiao-G, Wang H, Zhu J J, Zhang S M, Zhang B S, Yang H 2014 Chin. Phys. B 23 068801

    [6]

    Wang H X, Zheng X H, Wu Y Y, Gan X Y, Wang N M, Yang H 2013 Acta Phys. Sin. 62 218801 (in Chinese) [王海啸, 郑新和, 吴渊渊, 甘兴源, 王乃明, 杨辉 2013 物理学报 62 218801]

    [7]

    Green M A, Emery K, Hishikawa Y, Warta W 2013 Prog. Photovolt: Res. Appl. 21 827

    [8]

    Marti A, Araujo G L 1996 Sol. Energy Mater. Sol. Cells 43 203

    [9]

    Shockley W, Queisser H 1961 J. Appl. Phys. 32 510

    [10]

    Law D C, King R R, Yoon H, Archer M J, Boca A, Fetzer C M, Mesropian S, Isshiki T, Haddad M, Edmondson K M, Bhusari D, Yena J, Sherif R A, Atwater H A, Karama N H 2010 Sol. Energy Mater. Sol. Cells 94 1314

    [11]

    Dimroth F, Grave M, Beutel P, Fiedeler U, Karcher C, Tibbits N T D, Oliva E, Siefer G, Schachtner M, Wekkeli A, Bett A W, Krause R, Piccin M, Blanc N, Drazek C, Guiot E, Ghyselen B, Salvetat T, Tauzin A, Signamarcheix T, Dobrich A, Hannappel T, Schwarzburg K 2014 Prog. Photovolt: Res. Appl. 22 277

    [12]

    Schimper H J, Kollonitsch Z, Moller K, Seidel U, Bloeck U, Schwarzburg K, Willing F, Hannappel T 2006 J. Cryst. Growth 287 642

    [13]

    Dharmarasu N, Yamaguchi M, Khan A, Yamada T, Tanabe T, Takagishi S, Takamoto T, Ohshima T, Itoh H, Imaizumi M, Matsuda S 2010 Appl. Phys. Lett. 79 2399

    [14]

    Luo S, Ji H M, Gao F, Yang X G, Liang P, Zhao L J, Yang T 2013 Chin. Phys. Lett. 30 068101

    [15]

    Baillargeon J N, Cho A Y, Thiel F A, Fischer R J, Pearah P J, Cheng K Y 1994 Appl. Phys. Lett. 65 207

    [16]

    Baillargeon J N, Cho A Y, Cheng K Y 1996 J. Appl. Phys. 79 7652

    [17]

    Ji L, Lu S L, Wu Y Y, Dai P, Bian L F, Arimochi M, Watanabe T, Asaka N, Uemura M, Tackeuchi A, Uchida S, Yang H 2014 Sol. Energy Mater. Sol. Cells 27 1

    [18]

    Yin M, Nash G R, Coomber S D, Buckle L, Carrington Krier J P A, Aandreev A, Przeslak J S B, Valicourt G, Smith S J, Emeny M T, Ashley T 2008 Appl. Phys. Lett. 93 121106

    [19]

    Fouquet J E, Siegman A E 1985 Appl. Phys. Lett. 46 280

    [20]

    Varshni Y P 1967 Physica 34 149

    [21]

    Satzke K, Weiser G, Hoger R, Thulke W 1988 J. Appl. Phys. 63 5485

    [22]

    Li C F, Lin D Y, Huang Y S, Chen Y F, Tiong K K 1997 J. Appl. Phys. 81 400

    [23]

    Schwedler R, Reinhardt F, Grützmacher D, Wolter K 1991 J. Cryst. Growth 107 531

    [24]

    Maksimov O, Guo S P, Muňoz M, Tamargo M C 2001 J. Appl. Phys. 90 5135

  • [1] 梁爱华, 王旭升, 李国荣, 郑嘹赢, 江向平, 胡锐. KxNa1–xNbO3:Pr3+铁电体的光致发光和应力发光性能. 物理学报, 2022, 71(16): 167801. doi: 10.7498/aps.71.20220501
    [2] 马腾宇, 李万俊, 何先旺, 胡慧, 黄利娟, 张红, 熊元强, 李泓霖, 叶利娟, 孔春阳. β-Ga2O3纳米材料的尺寸调控与光致发光特性. 物理学报, 2020, 69(10): 108102. doi: 10.7498/aps.69.20200158
    [3] 刘姿, 张恒, 吴昊, 刘昌. Al纳米颗粒表面等离激元对ZnO光致发光增强的研究. 物理学报, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [4] 周小红, 杨卿, 邹军涛, 梁淑华. 生长条件对Ga掺杂ZnO薄膜微观结构及光致发光性能的影响. 物理学报, 2015, 64(8): 087803. doi: 10.7498/aps.64.087803
    [5] 王长远, 杨晓红, 马勇, 冯媛媛, 熊金龙, 王维. 水热合成ZnO:Cd纳米棒的微结构及光致发光特性. 物理学报, 2014, 63(15): 157701. doi: 10.7498/aps.63.157701
    [6] 王健, 谢自力, 张荣, 张韵, 刘斌, 陈鹏, 韩平. InN的光致发光特性研究. 物理学报, 2013, 62(11): 117802. doi: 10.7498/aps.62.117802
    [7] 程赛, 吕惠民, 石振海, 崔静雅. 碳泡沫衬底上氮化铝纳米线的生长及其光致发光特性研究. 物理学报, 2012, 61(12): 126201. doi: 10.7498/aps.61.126201
    [8] 方合, 王顺利, 李立群, 李培刚, 刘爱萍, 唐为华. 液相激光烧蚀合成ZnO及Zn/ZnO纳米颗粒及其光致发光性能. 物理学报, 2011, 60(9): 096102. doi: 10.7498/aps.60.096102
    [9] 吴艳南, 徐明, 吴定才, 董成军, 张佩佩, 纪红萱, 何林. Co,Sn共掺ZnO薄膜结构与光致发光的研究. 物理学报, 2011, 60(7): 077505. doi: 10.7498/aps.60.077505
    [10] 高立, 张建民. 微量Mg掺杂ZnO薄膜的光致发光光谱和带隙变化机理研究. 物理学报, 2010, 59(2): 1263-1267. doi: 10.7498/aps.59.1263
    [11] 郑立仁, 黄柏标, 尉吉勇. 不同气氛下SiOx纳米线的制备及形貌、红外、光致发光研究. 物理学报, 2009, 58(4): 2306-2312. doi: 10.7498/aps.58.2306
    [12] 吴定才, 胡志刚, 段满益, 徐禄祥, 刘方舒, 董成军, 吴艳南, 纪红萱, 徐明. Co与Cu掺杂ZnO薄膜的制备与光致发光研究. 物理学报, 2009, 58(10): 7261-7266. doi: 10.7498/aps.58.7261
    [13] 李素梅, 宋淑梅, 吕英波, 王爱芳, 吴爱玲, 郑卫民. 量子限制受主的光致发光研究. 物理学报, 2009, 58(7): 4936-4940. doi: 10.7498/aps.58.4936
    [14] 于 威, 李亚超, 丁文革, 张江勇, 杨彦斌, 傅广生. 氮化硅薄膜中纳米非晶硅颗粒的键合结构及光致发光. 物理学报, 2008, 57(6): 3661-3665. doi: 10.7498/aps.57.3661
    [15] 缪竞威, 王培禄, 朱洲森, 袁学东, 王 虎, 杨朝文, 师勉恭, 缪 蕾, 孙威立, 张 静, 廖雪花. 氮团簇离子注入单晶硅的光致发光谱研究. 物理学报, 2008, 57(4): 2174-2178. doi: 10.7498/aps.57.2174
    [16] 唐 斌, 邓 宏, 税正伟, 韦 敏, 陈金菊, 郝 昕. 掺AlZnO纳米线阵列的光致发光特性研究. 物理学报, 2007, 56(9): 5176-5179. doi: 10.7498/aps.56.5176
    [17] 王英龙, 卢丽芳, 闫常瑜, 褚立志, 周 阳, 傅广生, 彭英才. 具有窄光致发光谱的纳米Si晶薄膜的激光烧蚀制备. 物理学报, 2005, 54(12): 5738-5742. doi: 10.7498/aps.54.5738
    [18] 徐晓华, 牛智川, 倪海桥, 徐应强, 张 纬, 贺正宏, 韩 勤, 吴荣汉, 江德生. 分子束外延生长的(GaAs1-xSbx/InyGa1-yAs)/GaAs量子阱光致发光谱研究. 物理学报, 2005, 54(6): 2950-2954. doi: 10.7498/aps.54.2950
    [19] 黄凯, 王思慧, 施毅, 秦国毅, 张荣, 郑有炓. 内电场对纳米硅光致发光谱的影响. 物理学报, 2004, 53(4): 1236-1242. doi: 10.7498/aps.53.1236
    [20] 张喜田, 肖芝燕, 张伟力, 高 红, 王玉玺, 刘益春, 张吉英, 许 武. 高质量纳米ZnO薄膜的光致发光特性研究. 物理学报, 2003, 52(3): 740-744. doi: 10.7498/aps.52.740
计量
  • 文章访问数:  3222
  • PDF下载量:  129
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-05
  • 修回日期:  2015-05-05
  • 刊出日期:  2015-09-05

基于分子束外延生长的1.05 eV InGaAsP的超快光学特性研究

  • 1. 上海大学理学院, 索朗光伏材料与器件R&D联合实验室, 上海 200444;
  • 2. 中国科学院苏州纳米技术与纳米仿生研究所, 中国科学院纳米器件与应用重点实验室, 苏州 215123
  • 通信作者: 陆书龙, sllu2008@sinano.ac.cn
    基金项目: 国家自然科学基金(批准号: 61176128, 61376081, 61274076)、国家高技术研究发展计划(批准号: 2013AA050403)、苏州市自然科学基金(批准号: SYG201437)和中国科学院苏州纳米技术与纳米仿生研究所和索尼公司联合项目(批准号: Y1AAQ11002, Y2AAQ11004)资助的课题.

摘要: 利用分子束外延方法制备了应用于四结光伏电池的1.05 eV InGaAsP薄膜, 并对其超快光学特性进行了研究. 温度和激发功率有关的发光特性表明: InGaAsP材料以自由激子发光为主. 室温下InGaAsP材料的载流子发光弛豫时间达到10.4 ns, 且随激发功率增大而增大. 发光弛豫时间随温度升高呈现S形变化, 在低于50 K时随温度升高而增大, 在50–150 K之间时减小, 而温度高于150 K时再次增大. 基于载流子弛豫动力学, 分析并解释了温度及非辐射复合中心浓度对样品材料载流子发光弛豫时间S形变化的影响.

English Abstract

参考文献 (24)

目录

    /

    返回文章
    返回